Analysis of different noise applied on synthesis images using SVD compression
Jérôme BUISINE b9f38d55fd Visualization scripts updated | vor 5 Jahren | |
---|---|---|
images | vor 5 Jahren | |
modules | vor 5 Jahren | |
.gitignore | vor 5 Jahren | |
LICENSE | vor 5 Jahren | |
README.md | vor 5 Jahren | |
generate_all_data.py | vor 5 Jahren | |
generate_all_noise.sh | vor 5 Jahren | |
generate_data_model_random.py | vor 5 Jahren | |
generate_noise_all_curves.sh | vor 5 Jahren | |
noise_computation.py | vor 5 Jahren | |
noise_svd_visualization.py | vor 5 Jahren | |
requirements.txt | vor 5 Jahren |
Analysis of different noises using singular values vector obtained from SVD compression.
Noise list :
First of all you need to generate all noise of each images in /generated folder.
bash generate_all_noise.sh
Once you had generate all noisy images from synthesis scenes, you need to extract features (SVD singular values) using different metrics.
python generate_all_data.py --metric all --step 40 --color 0
python generate_all_data.py --metric all --step 40 --color 1
You can display curves of each noise for each scene :
bash generate_noise_all_curves.sh
This will give you some information about SVD singular values obtained from noise applied synthesis images. All these curves are available into curves_pictures folder after running script.
This script is used to compute all noise for each image in the images folder.
python noise_computation.py --noise salt_pepper --image path/to/image.png --n 1000 --identical 1 --output image_salt_pepper.png --all 1 --p 0.1
Parameters :
This script is used to display noise for each level of noise of image.
python noise_svd_visualization.py --prefix generated/${image}/${noise} --metric lab --n 1000 --mode svdne --interval "0, 200" --step 40 --norm 0 --ylim "0, 0.05"
Parameters :