123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- # main imports
- import sys, os, argparse
- import numpy as np
- # image processing imports
- from PIL import Image
- import matplotlib.pyplot as plt
- from ipfml import utils
- import ipfml.iqa.fr as fr_iqa
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- from data_attributes import get_image_features
- # others variables
- noise_list = cfg.noise_labels
- generated_folder = cfg.generated_folder
- filename_ext = cfg.filename_ext
- feature_choices = cfg.features_choices_labels
- normalization_choices = cfg.normalization_choices
- pictures_folder = cfg.pictures_output_folder
- error_data_choices = cfg.error_data_choices
- steparam_picture = 10
- def get_error_distance(param_error, y_true, y_test):
- function_name = param_error
- try:
- error_method = getattr(fr_iqa, function_name)
- except AttributeError:
- raise NotImplementedError("Error method `{}` not implement `{}`".format(fr_iqa.__name__, function_name))
- return error_method(y_true, y_test)
- def main():
- max_value_svd = 0
- min_value_svd = sys.maxsize
- parser = argparse.ArgumentParser(description="Display svd tend of images with noise level")
- parser.add_argument('--prefix', type=str, help='Generated noise folder prefix (ex: `generated/prefix/noise`)')
- parser.add_argument('--mode', type=str, help='Kind of normalization', default=normalization_choices)
- parser.add_argument('--feature', type=str, help='feature choice', default=feature_choices)
- parser.add_argument('--n', type=int, help='Number of images')
- parser.add_argument('--color', type=int, help='Use of color or grey level', default=0)
- parser.add_argument('--norm', type=int, help='Use of normalization from interval or whole data vector', default=0)
- parser.add_argument('--interval', type=str, help='Interval data choice (ex: `0, 200`)', default="0, 200")
- parser.add_argument('--step', type=int, help='Step of image indices to keep', default=1)
- parser.add_argument('--ylim', type=str, help='Limite to display data (ex: `0, 1`)', default="0, 1")
- parser.add_argument('--error', type=str, help='Error used for information data', default=error_data_choices)
- args = parser.parse_args()
- param_prefix = args.prefix
- param_mode = args.mode
- param_feature = args.feature
- param_n = args.n
- param_color = args.color
- param_norm = args.norm
- param_interval = list(map(int, args.interval.split(',')))
- param_step = args.step
- param_ylim = list(map(float, args.ylim.split(',')))
- param_error = args.error
- param_prefix = param_prefix.split('/')[1].replace('_', '')
- noise_name = param_prefix.split('/')[2]
- if param_color:
- file_path = os.path.join(param_prefix, param_prefix + "_" + noise_name + "_color_{}." + filename_ext)
- else:
- file_path = os.path.join(param_prefix, param_prefix + "_" + noise_name + "_{}." + filename_ext)
- begin, end = param_interval
- all_svd_data = []
- svd_data = []
- image_indices = []
- noise_indices = range(1, param_n)[::-1]
- # get all data from images
- for i in noise_indices:
- if i % steparam_picture == 0:
- image_path = file_path.format(str(i))
- img = Image.open(image_path)
- svd_values = get_image_features(param_feature, img)
- if param_norm:
- svd_values = svd_values[begin:end]
- all_svd_data.append(svd_values)
- # update min max values
- min_value = svd_values.min()
- max_value = svd_values.max()
- if min_value < min_value_svd:
- min_value_svd = min_value
- if max_value > max_value_svd:
- max_value_svd = max_value
- print('%.2f%%' % ((param_n - i + 1) / param_n * 100))
- sys.stdout.write("\033[F")
- previous_data = []
- error_data = [0.]
- for id, data in enumerate(all_svd_data):
- current_id = (param_n - ((id + 1) * 10))
- if current_id % param_step == 0:
- current_data = data
- if param_mode == 'svdn':
- current_data = utils.normalize_arr(current_data)
- if param_mode == 'svdne':
- current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
- svd_data.append(current_data)
- image_indices.append(current_id)
- # use of whole image data for computation of ssim or psnr
- if param_error == 'ssim' or param_error == 'psnr':
- image_path = file_path.format(str(current_id))
- current_data = np.asarray(Image.open(image_path))
- if len(previous_data) > 0:
- current_error = get_error_distance(param_error, previous_data, current_data)
- error_data.append(current_error)
- if len(previous_data) == 0:
- previous_data = current_data
- # display all data using matplotlib (configure plt)
- gridsize = (3, 2)
- # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(30, 22))
- fig = plt.figure(figsize=(30, 22))
- ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
- ax2 = plt.subplot2grid(gridsize, (2, 0), colspan=2)
- ax1.set_title(param_prefix + ', ' + noise_name + ' noise, interval information ['+ str(begin) +', '+ str(end) +'], ' + param_feature + ' feature, step ' + str(param_step) + ' normalization ' + param_mode)
- ax1.set_label('Importance of noise [1, 999]')
- ax1.set_xlabel('Vector features')
- for id, data in enumerate(svd_data):
- param_label = param_prefix + str(image_indices[id]) + " | " + param_error + ": " + str(error_data[id])
- ax1.plot(data, label=param_label)
- ax1.legend(bbox_to_anchor=(0.75, 1), loc=2, borderaxespad=0.2, fontsize=12)
- if not param_norm:
- ax1.set_xlim(begin, end)
- # adapt ylim
- y_begin, y_end = param_ylim
- ax1.set_ylim(y_begin, y_end)
- output_filename = param_prefix + "_" + noise_name + "_1_to_" + str(param_n) + "_B" + str(begin) + "_E" + str(end) + "_" + param_feature + "_S" + str(param_step) + "_norm" + str(param_norm )+ "_" + param_mode + "_" + param_error
- if param_color:
- output_filename = output_filename + '_color'
- ax2.set_title(param_error + " information for : " + param_prefix + ', ' + noise_name + ' noise, interval information ['+ str(begin) +', '+ str(end) +'], ' + param_feature + ' feature, step ' + str(param_step) + ', normalization ' + param_mode)
- ax2.set_ylabel(param_error + ' error')
- ax2.set_xlabel('Number of samples per pixels')
- ax2.set_xticks(range(len(image_indices)))
- ax2.set_xticklabels(image_indices)
- ax2.plot(error_data)
- print("Generation of output figure... %s" % output_filename)
- output_path = os.path.join(pictures_folder, output_filename)
- if not os.path.exists(pictures_folder):
- os.makedirs(pictures_folder)
- fig.savefig(output_path, dpi=(200))
- if __name__== "__main__":
- main()
|