|
@@ -0,0 +1,589 @@
|
|
|
+"""Iterated Local Search Algorithm implementation using multiple-surrogate (weighted sum surrogate) as fitness approximation
|
|
|
+"""
|
|
|
+
|
|
|
+# main imports
|
|
|
+import os
|
|
|
+import logging
|
|
|
+import joblib
|
|
|
+import time
|
|
|
+import math
|
|
|
+import numpy as np
|
|
|
+import pandas as pd
|
|
|
+import random
|
|
|
+
|
|
|
+# parallel imports
|
|
|
+from joblib import Parallel, delayed
|
|
|
+import multiprocessing
|
|
|
+
|
|
|
+# module imports
|
|
|
+from macop.algorithms.base import Algorithm
|
|
|
+from macop.solutions.discrete import BinarySolution
|
|
|
+
|
|
|
+from .LSSurrogate import LocalSearchSurrogate
|
|
|
+from .utils.SurrogateAnalysis import SurrogateAnalysis
|
|
|
+
|
|
|
+from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
|
|
|
+ LassoCV, ElasticNet)
|
|
|
+
|
|
|
+from wsao.sao.problems.nd3dproblem import ND3DProblem
|
|
|
+from wsao.sao.surrogates.walsh import WalshSurrogate
|
|
|
+from wsao.sao.algos.fitter import FitterAlgo
|
|
|
+from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
|
|
|
+
|
|
|
+class ILSMultiSpecificSurrogate(Algorithm):
|
|
|
+ """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using multiple-surrogate where each sub-surrogate learn from specific dataset
|
|
|
+
|
|
|
+
|
|
|
+ Attributes:
|
|
|
+ initalizer: {function} -- basic function strategy to initialize solution
|
|
|
+ evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
|
|
|
+ sub_evaluator: {function} -- sub evaluator function in order to obtained fitness for sub-model
|
|
|
+ operators: {[Operator]} -- list of operator to use when launching algorithm
|
|
|
+ policy: {Policy} -- Policy class implementation strategy to select operators
|
|
|
+ validator: {function} -- basic function to check if solution is valid or not under some constraints
|
|
|
+ maximise: {bool} -- specify kind of optimization problem
|
|
|
+ currentSolution: {Solution} -- current solution managed for current evaluation
|
|
|
+ bestSolution: {Solution} -- best solution found so far during running algorithm
|
|
|
+ ls_iteration: {int} -- number of evaluation for each local search algorithm
|
|
|
+ surrogates_file_path: {str} -- Surrogates model folder to load (models trained using https://gitlab.com/florianlprt/wsao)
|
|
|
+ output_log_surrogates: {str} -- Log folder for surrogates training model
|
|
|
+ start_train_surrogates: {int} -- number of evaluation expected before start training and use surrogate
|
|
|
+ surrogates: [{Surrogate}] -- Surrogates model instance loaded
|
|
|
+ ls_train_surrogates: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
|
|
|
+ k_division: {int} -- number of expected division for current features problem
|
|
|
+ k_dynamic: {bool} -- specify if indices are changed for each time we train a new surrogate model
|
|
|
+ k_random: {bool} -- random initialization of k_indices for each surrogate features model data
|
|
|
+ generate_only: {bool} -- generate only a specific number of expected real solutions evaluated
|
|
|
+ solutions_folder: {str} -- Path where real evaluated solutions on subset are saved
|
|
|
+ callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
|
|
|
+ """
|
|
|
+ def __init__(self,
|
|
|
+ initalizer,
|
|
|
+ evaluator,
|
|
|
+ sub_evaluator,
|
|
|
+ operators,
|
|
|
+ policy,
|
|
|
+ validator,
|
|
|
+ surrogates_file_path,
|
|
|
+ output_log_surrogates,
|
|
|
+ start_train_surrogates,
|
|
|
+ ls_train_surrogates,
|
|
|
+ k_division,
|
|
|
+ solutions_folder,
|
|
|
+ k_random=True,
|
|
|
+ k_dynamic=False,
|
|
|
+ generate_only=False,
|
|
|
+ maximise=True,
|
|
|
+ parent=None):
|
|
|
+
|
|
|
+ # set real evaluator as default
|
|
|
+ super().__init__(initalizer, evaluator, operators, policy,
|
|
|
+ validator, maximise, parent)
|
|
|
+
|
|
|
+ self._n_local_search = 0
|
|
|
+ self._total_n_local_search = 0
|
|
|
+ self._main_evaluator = evaluator
|
|
|
+ self._sub_evaluator = sub_evaluator
|
|
|
+
|
|
|
+ self._surrogates_file_path = surrogates_file_path
|
|
|
+ self._start_train_surrogates = start_train_surrogates
|
|
|
+ self._output_log_surrogates = output_log_surrogates
|
|
|
+
|
|
|
+ self._surrogate_evaluator = None
|
|
|
+ self._surrogate_analyser = None
|
|
|
+
|
|
|
+ self._ls_train_surrogates = ls_train_surrogates
|
|
|
+
|
|
|
+ self._k_division = k_division
|
|
|
+ self._k_dynamic = k_dynamic
|
|
|
+ self._k_random = k_random
|
|
|
+ self._k_indices = None
|
|
|
+ self._surrogates = None
|
|
|
+ self._population = None
|
|
|
+
|
|
|
+ self._generate_only = generate_only
|
|
|
+ self._solutions_folder = solutions_folder
|
|
|
+
|
|
|
+
|
|
|
+ def init_solutions_files(self):
|
|
|
+ self._solutions_files = []
|
|
|
+
|
|
|
+ if not os.path.exists(self._solutions_folder):
|
|
|
+ os.makedirs(self._solutions_folder)
|
|
|
+
|
|
|
+ # for each sub surrogate, associate its own surrogate file
|
|
|
+ for i in range(len(self._k_indices)):
|
|
|
+ index_str = str(i)
|
|
|
+
|
|
|
+ while len(index_str) < 3:
|
|
|
+ index_str = "0" + index_str
|
|
|
+
|
|
|
+ solutions_path = os.path.join(self._solutions_folder, f'surrogate_data_{index_str}')
|
|
|
+
|
|
|
+ # initialize solutions file if not exist
|
|
|
+ if not os.path.exists(solutions_path):
|
|
|
+ with open(solutions_path, 'w') as f:
|
|
|
+ f.write('x;y\n')
|
|
|
+
|
|
|
+ self._solutions_files.append(solutions_path)
|
|
|
+
|
|
|
+
|
|
|
+ def define_sub_evaluators(self):
|
|
|
+ self._sub_evaluators = []
|
|
|
+
|
|
|
+ for i in range(len(self._k_indices)):
|
|
|
+
|
|
|
+ # need to pass as default argument indices
|
|
|
+ current_evaluator = lambda s, number=i, indices=self._k_indices[i]: self._sub_evaluator(s, number, indices)
|
|
|
+ self._sub_evaluators.append(current_evaluator)
|
|
|
+
|
|
|
+
|
|
|
+ def init_population(self):
|
|
|
+
|
|
|
+ self._population = []
|
|
|
+
|
|
|
+ # initialize the population
|
|
|
+ for i in range(len(self._k_indices)):
|
|
|
+
|
|
|
+ current_solution = self.pop_initializer(i)
|
|
|
+
|
|
|
+ # compute fitness using sub-problem evaluator
|
|
|
+ fitness_score = self._sub_evaluators[i](current_solution)
|
|
|
+ current_solution._score = fitness_score
|
|
|
+
|
|
|
+ self._population.append(current_solution)
|
|
|
+
|
|
|
+
|
|
|
+ def pop_initializer(self, index):
|
|
|
+ problem_size = len(self._k_indices[index])
|
|
|
+ return BinarySolution([], problem_size).random(self._validator)
|
|
|
+
|
|
|
+
|
|
|
+ def init_k_split_indices(self):
|
|
|
+ """Initialize k_indices for the new training of surrogate
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ k_indices: [description]
|
|
|
+ """
|
|
|
+ a = list(range(self._bestSolution._size))
|
|
|
+ n_elements = int(math.ceil(self._bestSolution._size / self._k_division)) # use of ceil to avoid loss of data
|
|
|
+
|
|
|
+ # TODO : (check) if random is possible or not
|
|
|
+ # if self._k_random:
|
|
|
+ # random.shuffle(a) # random subset
|
|
|
+
|
|
|
+ splitted_indices = [a[x:x+n_elements] for x in range(0, len(a), n_elements)]
|
|
|
+
|
|
|
+ self._k_division = len(splitted_indices) # update size of k if necessary
|
|
|
+ self._k_indices = splitted_indices
|
|
|
+
|
|
|
+
|
|
|
+ def train_surrogate(self, index, indices):
|
|
|
+
|
|
|
+ # 1. Data sets preparation (train and test) use now of specific dataset for surrogate
|
|
|
+
|
|
|
+ # dynamic number of samples based on dataset real evaluations
|
|
|
+ nsamples = None
|
|
|
+ with open(self._solutions_files[index], 'r') as f:
|
|
|
+ nsamples = len(f.readlines()) - 1 # avoid header
|
|
|
+
|
|
|
+ training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
|
|
|
+
|
|
|
+ df = pd.read_csv(self._solutions_files[index], sep=';')
|
|
|
+ # learning set and test set
|
|
|
+ current_learn = df.sample(training_samples)
|
|
|
+ current_test = df.drop(current_learn.index)
|
|
|
+
|
|
|
+ problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
|
|
|
+ model = Lasso(alpha=1e-5)
|
|
|
+ surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
|
|
|
+ analysis = FitterAnalysis(logfile=os.path.join(self._output_log_surrogates, f"train_surrogate_{index}.log"), problem=problem)
|
|
|
+ algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
|
|
|
+
|
|
|
+ print(f"Start fitting again the surrogate model n°{index}, using {training_samples} of {nsamples} samples for train dataset")
|
|
|
+ for r in range(10):
|
|
|
+ print(f"Iteration n°{r}: for fitting surrogate n°{index}")
|
|
|
+ algo.run_samples(learn=current_learn, test=current_test, step=10)
|
|
|
+
|
|
|
+ # keep well ordered surrogate into file manager
|
|
|
+ str_index = str(index)
|
|
|
+
|
|
|
+ while len(str_index) < 6:
|
|
|
+ str_index = "0" + str_index
|
|
|
+
|
|
|
+ joblib.dump(algo, os.path.join(self._surrogates_file_path, f'surrogate_{str_index}'))
|
|
|
+
|
|
|
+ return str_index
|
|
|
+
|
|
|
+
|
|
|
+ def train_surrogates(self):
|
|
|
+ """Retrain if necessary the whole surrogate fitness approximation function
|
|
|
+ """
|
|
|
+ # Following https://gitlab.com/florianlprt/wsao, we re-train the model
|
|
|
+ # ---------------------------------------------------------------------------
|
|
|
+ # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
|
|
|
+ # model=lasso,alpha=1e-5 \
|
|
|
+ # surrogate=walsh,order=3 \
|
|
|
+ # algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
|
|
|
+ # sample=1000,step=10 \
|
|
|
+ # analysis=fitter,logfile=out_fit.csv
|
|
|
+
|
|
|
+ # 1. for each sub space indices, learn new surrogate
|
|
|
+ if not os.path.exists(self._surrogates_file_path):
|
|
|
+ os.makedirs(self._surrogates_file_path)
|
|
|
+
|
|
|
+ num_cores = multiprocessing.cpu_count()
|
|
|
+
|
|
|
+ if not os.path.exists(self._output_log_surrogates):
|
|
|
+ os.makedirs(self._output_log_surrogates)
|
|
|
+
|
|
|
+ Parallel(n_jobs=num_cores)(delayed(self.train_surrogate)(index, indices) for index, indices in enumerate(self._k_indices))
|
|
|
+
|
|
|
+
|
|
|
+ def load_surrogates(self):
|
|
|
+ """Load algorithm with surrogate model and create lambda evaluator function
|
|
|
+ """
|
|
|
+
|
|
|
+ # need to first train surrogate if not exist
|
|
|
+ if not os.path.exists(self._surrogates_file_path):
|
|
|
+ self.train_surrogates()
|
|
|
+
|
|
|
+ self._surrogates = []
|
|
|
+
|
|
|
+ surrogates_path = sorted(os.listdir(self._surrogates_file_path))
|
|
|
+
|
|
|
+ for surrogate_p in surrogates_path:
|
|
|
+ model_path = os.path.join(self._surrogates_file_path, surrogate_p)
|
|
|
+ surrogate_model = joblib.load(model_path)
|
|
|
+
|
|
|
+ self._surrogates.append(surrogate_model)
|
|
|
+
|
|
|
+
|
|
|
+ def surrogate_evaluator(self, solution):
|
|
|
+ """Compute mean of each surrogate model using targeted indices
|
|
|
+
|
|
|
+ Args:
|
|
|
+ solution: {Solution} -- current solution to evaluate using multi-surrogate evaluation
|
|
|
+
|
|
|
+ Return:
|
|
|
+ mean: {float} -- mean score of surrogate models
|
|
|
+ """
|
|
|
+ scores = []
|
|
|
+ solution_data = np.array(solution._data)
|
|
|
+
|
|
|
+ # for each indices set, get trained surrogate model and made prediction score
|
|
|
+ for i, indices in enumerate(self._k_indices):
|
|
|
+ current_data = solution_data[indices]
|
|
|
+ current_score = self._surrogates[i].surrogate.predict([current_data])[0]
|
|
|
+ scores.append(current_score)
|
|
|
+
|
|
|
+ return sum(scores) / len(scores)
|
|
|
+
|
|
|
+ def surrogates_coefficient_of_determination(self):
|
|
|
+ """Compute r² for each sub surrogate model
|
|
|
+
|
|
|
+ Return:
|
|
|
+ r_squared_scores: [{float}] -- mean score of r_squred obtained from surrogate models
|
|
|
+ """
|
|
|
+
|
|
|
+ # for each indices set, get r^2 surrogate model and made prediction score
|
|
|
+ num_cores = multiprocessing.cpu_count()
|
|
|
+
|
|
|
+ r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
|
|
|
+
|
|
|
+ return r_squared_scores
|
|
|
+
|
|
|
+ def surrogates_mae(self):
|
|
|
+ """Compute mae for each sub surrogate model
|
|
|
+
|
|
|
+ Return:
|
|
|
+ mae_scores: [{float}] -- mae scores from model
|
|
|
+ """
|
|
|
+
|
|
|
+ # for each indices set, get mae surrogate model and made prediction score
|
|
|
+ num_cores = multiprocessing.cpu_count()
|
|
|
+
|
|
|
+ mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
|
|
|
+
|
|
|
+
|
|
|
+ return mae_scores
|
|
|
+
|
|
|
+ def add_to_surrogate(self, solution, index):
|
|
|
+
|
|
|
+ # save real evaluated solution into specific file for surrogate
|
|
|
+ with open(self._solutions_files[index], 'a') as f:
|
|
|
+
|
|
|
+ line = ""
|
|
|
+
|
|
|
+ for index, e in enumerate(solution._data):
|
|
|
+
|
|
|
+ line += str(e)
|
|
|
+
|
|
|
+ if index < len(solution._data) - 1:
|
|
|
+ line += ","
|
|
|
+
|
|
|
+ line += ";"
|
|
|
+ line += str(solution._score)
|
|
|
+
|
|
|
+ f.write(line + "\n")
|
|
|
+
|
|
|
+ def run(self, evaluations, ls_evaluations=100):
|
|
|
+ """
|
|
|
+ Run the iterated local search algorithm using local search (EvE compromise)
|
|
|
+
|
|
|
+ Args:
|
|
|
+ evaluations: {int} -- number of global evaluations for ILS
|
|
|
+ ls_evaluations: {int} -- number of Local search evaluations (default: 100)
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ {Solution} -- best solution found
|
|
|
+ """
|
|
|
+
|
|
|
+ # by default use of mother method to initialize variables
|
|
|
+ super().run(evaluations)
|
|
|
+
|
|
|
+ # initialize current solution
|
|
|
+ self.initRun()
|
|
|
+
|
|
|
+ self.init_k_split_indices()
|
|
|
+
|
|
|
+ # add norm to indentify sub problem data
|
|
|
+ self.init_solutions_files()
|
|
|
+
|
|
|
+ # here we each surrogate sub evaluator
|
|
|
+ self.define_sub_evaluators()
|
|
|
+ self.init_population()
|
|
|
+
|
|
|
+ # enable resuming for ILS
|
|
|
+ self.resume()
|
|
|
+
|
|
|
+ # count number of surrogate obtained and restart using real evaluations done for each surrogate (sub-model)
|
|
|
+ if (self._start_train_surrogates * self._k_division) > self.getGlobalEvaluation():
|
|
|
+
|
|
|
+ # for each sub problem (surrogate)
|
|
|
+ for i in range(self._k_division):
|
|
|
+
|
|
|
+ nsamples = None
|
|
|
+ with open(self._solutions_files[i], 'r') as f:
|
|
|
+ nsamples = len(f.readlines()) - 1 # avoid header
|
|
|
+
|
|
|
+ if nsamples is None:
|
|
|
+ nsamples = 0
|
|
|
+
|
|
|
+ # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
|
|
|
+ # using randomly generated solutions (in order to cover seearch space)
|
|
|
+ while self._start_train_surrogates > nsamples:
|
|
|
+
|
|
|
+ print(f'Real solutions extraction for surrogate n°{i}: {nsamples} of {self._start_train_surrogates}')
|
|
|
+
|
|
|
+ newSolution = self.pop_initializer(i)
|
|
|
+
|
|
|
+ # evaluate new solution
|
|
|
+ newSolution.evaluate(self._sub_evaluators[i])
|
|
|
+
|
|
|
+ # add it to surrogate pool
|
|
|
+ self.add_to_surrogate(newSolution, i)
|
|
|
+
|
|
|
+ nsamples += 1
|
|
|
+
|
|
|
+ # increase number of evaluation
|
|
|
+ self.increaseEvaluation()
|
|
|
+
|
|
|
+ # stop this process after generating solution
|
|
|
+ if self._generate_only:
|
|
|
+ return self._bestSolution
|
|
|
+
|
|
|
+ # train surrogate on real evaluated solutions file
|
|
|
+ self.train_surrogates()
|
|
|
+ self.load_surrogates()
|
|
|
+
|
|
|
+ # local search algorithm implementation
|
|
|
+ while not self.stop():
|
|
|
+
|
|
|
+ # set current evaluator based on used or not of surrogate function
|
|
|
+ self._evaluator = self.surrogate_evaluator if self._start_train_surrogates <= self.getGlobalEvaluation() else self._main_evaluator
|
|
|
+
|
|
|
+
|
|
|
+ local_search_list = []
|
|
|
+
|
|
|
+ for i in range(self._k_division):
|
|
|
+
|
|
|
+ # use specific initializer for pop_initialiser
|
|
|
+ # specific surrogate evaluator for this local search
|
|
|
+ ls = LocalSearchSurrogate(lambda index=i: self.pop_initializer(index),
|
|
|
+ lambda s: self._surrogates[i].surrogate.predict([s._data])[0],
|
|
|
+ self._operators,
|
|
|
+ self._policy,
|
|
|
+ self._validator,
|
|
|
+ self._maximise,
|
|
|
+ parent=self)
|
|
|
+
|
|
|
+ # add same callbacks
|
|
|
+ for callback in self._callbacks:
|
|
|
+ ls.addCallback(callback)
|
|
|
+
|
|
|
+ local_search_list.append(ls)
|
|
|
+
|
|
|
+ # parallel run of each local search
|
|
|
+ num_cores = multiprocessing.cpu_count()
|
|
|
+ ls_solutions = Parallel(n_jobs=num_cores)(delayed(ls.run)(ls_evaluations) for ls in local_search_list)
|
|
|
+
|
|
|
+ # create and search solution from local search
|
|
|
+ self._numberOfEvaluations += ls_evaluations * self._k_division
|
|
|
+
|
|
|
+ # for each sub problem, update population
|
|
|
+ for i, sub_problem_solution in enumerate(ls_solutions):
|
|
|
+
|
|
|
+ # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
|
|
|
+ # Update : always add new solution into surrogate pool, not only if solution is better
|
|
|
+ #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
|
|
|
+ if self._start_train_surrogates <= self.getGlobalEvaluation():
|
|
|
+
|
|
|
+ # if better solution found from local search, retrained the found solution and test again
|
|
|
+ # without use of surrogate
|
|
|
+ fitness_score = self._sub_evaluators[i](sub_problem_solution)
|
|
|
+ # self.increaseEvaluation() # dot not add evaluation
|
|
|
+
|
|
|
+ sub_problem_solution._score = fitness_score
|
|
|
+
|
|
|
+ # if solution is really better after real evaluation, then we replace (depending of problem nature (minimizing / maximizing))
|
|
|
+ if self._maximise:
|
|
|
+ if sub_problem_solution.fitness > self._population[i].fitness:
|
|
|
+ self._population[i] = sub_problem_solution
|
|
|
+ else:
|
|
|
+ if sub_problem_solution.fitness < self._population[i].fitness:
|
|
|
+ self._population[i] = sub_problem_solution
|
|
|
+
|
|
|
+ self.add_to_surrogate(sub_problem_solution, i)
|
|
|
+
|
|
|
+ # main best solution update
|
|
|
+ if self._start_train_surrogates <= self.getGlobalEvaluation():
|
|
|
+
|
|
|
+ # need to create virtual solution from current population
|
|
|
+ obtained_solution_data = np.array([ s._data for s in self._population ], dtype='object').flatten().tolist()
|
|
|
+
|
|
|
+ if list(obtained_solution_data) == list(self._bestSolution._data):
|
|
|
+ print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
|
|
|
+ else:
|
|
|
+ print(f'-- Updates found into population from sub-model surrogates LS')
|
|
|
+ # init random solution
|
|
|
+ current_solution = self._initializer()
|
|
|
+ current_solution.data = obtained_solution_data
|
|
|
+
|
|
|
+ fitness_score = self._main_evaluator(current_solution)
|
|
|
+
|
|
|
+ # new computed solution score
|
|
|
+ current_solution._score = fitness_score
|
|
|
+
|
|
|
+ # if solution is really better after real evaluation, then we replace
|
|
|
+ if self.isBetter(current_solution):
|
|
|
+ self._bestSolution = current_solution
|
|
|
+
|
|
|
+ print(f'-- Current main solution from population is {current_solution._score} vs. {self._bestSolution._score}')
|
|
|
+ self.progress()
|
|
|
+
|
|
|
+ # main best solution update
|
|
|
+ if self._start_train_surrogates <= self.getGlobalEvaluation():
|
|
|
+
|
|
|
+ # need to create virtual solution from current population
|
|
|
+ obtained_solution_data = np.array([ s._data for s in ls_solutions ], dtype='object').flatten().tolist()
|
|
|
+
|
|
|
+ if list(obtained_solution_data) == list(self._bestSolution._data):
|
|
|
+ print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
|
|
|
+ else:
|
|
|
+ print(f'-- Updates found from sub-model surrogates LS')
|
|
|
+ # init random solution
|
|
|
+ current_solution = self._initializer()
|
|
|
+ current_solution.data = obtained_solution_data
|
|
|
+
|
|
|
+ fitness_score = self._main_evaluator(current_solution)
|
|
|
+
|
|
|
+ # new computed solution score
|
|
|
+ current_solution._score = fitness_score
|
|
|
+
|
|
|
+ # if solution is really better after real evaluation, then we replace
|
|
|
+ if self.isBetter(current_solution):
|
|
|
+
|
|
|
+ print(f'Exploration solution obtained from LS surrogates enable improvment of main solution')
|
|
|
+ self._bestSolution = current_solution
|
|
|
+
|
|
|
+ print(f'Exploration solution obtained from LS surrogates enable improvment of main solution')
|
|
|
+ # also update the whole population as restarting process if main solution is better
|
|
|
+ for i, sub_problem_solution in enumerate(ls_solutions):
|
|
|
+
|
|
|
+ # already evaluated sub solution
|
|
|
+ self._population[i] = sub_problem_solution
|
|
|
+
|
|
|
+ print(f'-- Current main solution obtained from `LS solutions` is {current_solution._score} vs. {self._bestSolution._score}')
|
|
|
+ logging.info(f'-- Current main solution obtained from `LS solutions` is {current_solution._score} vs. {self._bestSolution._score}')
|
|
|
+ self.progress()
|
|
|
+
|
|
|
+ print(f'State of current population for surrogates ({len(self._population)} members)')
|
|
|
+ for i, s in enumerate(self._population):
|
|
|
+ print(f'Population[{i}]: best solution fitness is {s.fitness}')
|
|
|
+
|
|
|
+ # check using specific dynamic criteria based on r^2
|
|
|
+ r_squared_scores = self.surrogates_coefficient_of_determination()
|
|
|
+ r_squared = sum(r_squared_scores) / len(r_squared_scores)
|
|
|
+
|
|
|
+ mae_scores = self.surrogates_mae()
|
|
|
+ mae_score = sum(mae_scores) / len(mae_scores)
|
|
|
+
|
|
|
+ r_squared_value = 0 if r_squared < 0 else r_squared
|
|
|
+
|
|
|
+ training_surrogate_every = int(r_squared_value * self._ls_train_surrogates) # use of absolute value for r²
|
|
|
+
|
|
|
+ # avoid issue when lauching every each local search
|
|
|
+ if training_surrogate_every <= 0:
|
|
|
+ training_surrogate_every = 1
|
|
|
+
|
|
|
+ logging.info(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
|
|
|
+ print(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
|
|
|
+
|
|
|
+ # check if necessary or not to train again surrogate
|
|
|
+ if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogates <= self.getGlobalEvaluation():
|
|
|
+
|
|
|
+ # reinitialization of k_indices for the new training
|
|
|
+ # TODO : remove this part temporally
|
|
|
+ # if self._k_dynamic:
|
|
|
+ # print(f"Reinitialization of k_indices using `k={self._k_division} `for the new training")
|
|
|
+ # self.init_k_split_indices()
|
|
|
+
|
|
|
+ # train again surrogate on real evaluated solutions file
|
|
|
+ start_training = time.time()
|
|
|
+ self.train_surrogates()
|
|
|
+ training_time = time.time() - start_training
|
|
|
+
|
|
|
+ self._surrogate_analyser = SurrogateAnalysis(training_time, training_surrogate_every, r_squared_scores, r_squared, mae_scores, mae_score, self.getGlobalMaxEvaluation(), self._total_n_local_search)
|
|
|
+
|
|
|
+ # reload new surrogate function
|
|
|
+ self.load_surrogates()
|
|
|
+
|
|
|
+ # reinitialize number of local search
|
|
|
+ self._n_local_search = 0
|
|
|
+
|
|
|
+ # increase number of local search done
|
|
|
+ self._n_local_search += 1
|
|
|
+ self._total_n_local_search += 1
|
|
|
+
|
|
|
+ self.information()
|
|
|
+
|
|
|
+ logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
|
|
|
+
|
|
|
+ self.end()
|
|
|
+ return self._bestSolution
|
|
|
+
|
|
|
+ def addCallback(self, callback):
|
|
|
+ """Add new callback to algorithm specifying usefull parameters
|
|
|
+
|
|
|
+ Args:
|
|
|
+ callback: {Callback} -- specific Callback instance
|
|
|
+ """
|
|
|
+ # specify current main algorithm reference
|
|
|
+ if self.getParent() is not None:
|
|
|
+ callback.setAlgo(self.getParent())
|
|
|
+ else:
|
|
|
+ callback.setAlgo(self)
|
|
|
+
|
|
|
+ # set as new
|
|
|
+ self._callbacks.append(callback)
|