Pārlūkot izejas kodu

Add test of RFE performances

Jérôme BUISINE 3 gadi atpakaļ
vecāks
revīzija
2f68ba7565
1 mainītis faili ar 148 papildinājumiem un 0 dzēšanām
  1. 148 0
      check_random_forest_perfomance_rfe.py

+ 148 - 0
check_random_forest_perfomance_rfe.py

@@ -0,0 +1,148 @@
+# main imports
+import os
+import sys
+import argparse
+import pandas as pd
+import numpy as np
+import logging
+import datetime
+import random
+
+# model imports
+from sklearn.model_selection import train_test_split
+from sklearn.model_selection import GridSearchCV
+from sklearn.linear_model import LogisticRegression
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
+from sklearn.feature_selection import SelectFromModel
+
+import joblib
+import sklearn.svm as svm
+from sklearn.utils import shuffle
+from sklearn.metrics import roc_auc_score
+from sklearn.model_selection import cross_val_score
+from sklearn.feature_selection import RFECV
+
+# modules and config imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+import custom_config as cfg
+import models as mdl
+#from sklearn.ensemble import RandomForestClassifier
+
+def loadDataset(filename):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    # scene_name; zone_id; image_index_end; label; data
+
+    dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
+    dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
+
+    # default first shuffle of data
+    dataset_train = shuffle(dataset_train)
+    dataset_test = shuffle(dataset_test)
+
+    # get dataset with equal number of classes occurences
+    noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1]
+    not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0]
+    #nb_noisy_train = len(noisy_df_train.index)
+
+    noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1]
+    not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0]
+    #nb_noisy_test = len(noisy_df_test.index)
+
+    # use of all data
+    final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
+    final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
+
+    # shuffle data another time
+    final_df_train = shuffle(final_df_train)
+    final_df_test = shuffle(final_df_test)
+
+    # use of the whole data set for training
+    x_dataset_train = final_df_train.iloc[:, 4:]
+    x_dataset_test = final_df_test.iloc[:, 4:]
+
+    y_dataset_train = final_df_train.iloc[:, 3]
+    y_dataset_test = final_df_test.iloc[:, 3]
+
+    return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
+
+
+def train_predict_random_forest(x_train, y_train, x_test, y_test):
+
+    print('Start training Random forest model')
+    start = datetime.datetime.now()
+    
+    # model = _get_best_model(x_train_filters, y_train_filters)
+    random_forest_model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
+
+    # No need to learn
+    random_forest_model = random_forest_model.fit(x_train, y_train)
+    
+    y_test_model = random_forest_model.predict(x_test)
+    test_roc_auc = roc_auc_score(y_test, y_test_model)
+
+    end = datetime.datetime.now()
+
+    diff = end - start
+
+    print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+
+    return random_forest_model
+
+
+def train_predict_selector(model, x_train, y_train, x_test, y_test):
+
+    start = datetime.datetime.now()
+
+    print("Using Select from model with Random Forest")
+    selector = RFECV(estimator=model, min_features_to_select=13, verbose=1, n_jobs=4)
+    selector.fit(x_train, y_train)
+    x_train_transformed = selector.transform(x_train)
+    x_test_transformed = selector.transform(x_test)
+
+    print('Previous shape:', x_train.shape)
+    print('New shape:', x_train_transformed.shape)
+
+    # using specific features
+    model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
+    model = model.fit(x_train_transformed, y_train)
+
+    y_test_model= model.predict(x_test_transformed)
+    test_roc_auc = roc_auc_score(y_test, y_test_model)
+
+    end = datetime.datetime.now()
+
+    diff = end - start
+    print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Train and find using all data to use for model")
+
+    parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
+    parser.add_argument('--output', type=str, help='output surrogate model name')
+
+    args = parser.parse_args()
+
+    p_data_file = args.data
+    p_output = args.output
+
+    print(p_data_file)
+
+    # load data from file
+    x_train, y_train, x_test, y_test = loadDataset(p_data_file)
+
+    # train classical random forest
+    random_forest_model = train_predict_random_forest(x_train, y_train, x_test, y_test)
+
+    # train using select from model
+    train_predict_selector(random_forest_model, x_train, y_train, x_test, y_test)
+
+
+
+
+if __name__ == "__main__":
+    main()