|
@@ -0,0 +1,148 @@
|
|
|
|
+# main imports
|
|
|
|
+import os
|
|
|
|
+import sys
|
|
|
|
+import argparse
|
|
|
|
+import pandas as pd
|
|
|
|
+import numpy as np
|
|
|
|
+import logging
|
|
|
|
+import datetime
|
|
|
|
+import random
|
|
|
|
+
|
|
|
|
+# model imports
|
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
|
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
|
+from sklearn.feature_selection import SelectFromModel
|
|
|
|
+
|
|
|
|
+import joblib
|
|
|
|
+import sklearn.svm as svm
|
|
|
|
+from sklearn.utils import shuffle
|
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
|
+from sklearn.feature_selection import RFECV
|
|
|
|
+
|
|
|
|
+# modules and config imports
|
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
|
+
|
|
|
|
+import custom_config as cfg
|
|
|
|
+import models as mdl
|
|
|
|
+#from sklearn.ensemble import RandomForestClassifier
|
|
|
|
+
|
|
|
|
+def loadDataset(filename):
|
|
|
|
+
|
|
|
|
+ ########################
|
|
|
|
+ # 1. Get and prepare data
|
|
|
|
+ ########################
|
|
|
|
+ # scene_name; zone_id; image_index_end; label; data
|
|
|
|
+
|
|
|
|
+ dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
|
|
|
|
+ dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
|
|
|
|
+
|
|
|
|
+ # default first shuffle of data
|
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
|
+
|
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
|
+ noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1]
|
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0]
|
|
|
|
+ #nb_noisy_train = len(noisy_df_train.index)
|
|
|
|
+
|
|
|
|
+ noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1]
|
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0]
|
|
|
|
+ #nb_noisy_test = len(noisy_df_test.index)
|
|
|
|
+
|
|
|
|
+ # use of all data
|
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
|
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
|
|
|
|
+
|
|
|
|
+ # shuffle data another time
|
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
|
+
|
|
|
|
+ # use of the whole data set for training
|
|
|
|
+ x_dataset_train = final_df_train.iloc[:, 4:]
|
|
|
|
+ x_dataset_test = final_df_test.iloc[:, 4:]
|
|
|
|
+
|
|
|
|
+ y_dataset_train = final_df_train.iloc[:, 3]
|
|
|
|
+ y_dataset_test = final_df_test.iloc[:, 3]
|
|
|
|
+
|
|
|
|
+ return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def train_predict_random_forest(x_train, y_train, x_test, y_test):
|
|
|
|
+
|
|
|
|
+ print('Start training Random forest model')
|
|
|
|
+ start = datetime.datetime.now()
|
|
|
|
+
|
|
|
|
+ # model = _get_best_model(x_train_filters, y_train_filters)
|
|
|
|
+ random_forest_model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
|
|
|
|
+
|
|
|
|
+ # No need to learn
|
|
|
|
+ random_forest_model = random_forest_model.fit(x_train, y_train)
|
|
|
|
+
|
|
|
|
+ y_test_model = random_forest_model.predict(x_test)
|
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
|
+
|
|
|
|
+ end = datetime.datetime.now()
|
|
|
|
+
|
|
|
|
+ diff = end - start
|
|
|
|
+
|
|
|
|
+ print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
|
|
|
|
+
|
|
|
|
+ return random_forest_model
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def train_predict_selector(model, x_train, y_train, x_test, y_test):
|
|
|
|
+
|
|
|
|
+ start = datetime.datetime.now()
|
|
|
|
+
|
|
|
|
+ print("Using Select from model with Random Forest")
|
|
|
|
+ selector = RFECV(estimator=model, min_features_to_select=13, verbose=1, n_jobs=4)
|
|
|
|
+ selector.fit(x_train, y_train)
|
|
|
|
+ x_train_transformed = selector.transform(x_train)
|
|
|
|
+ x_test_transformed = selector.transform(x_test)
|
|
|
|
+
|
|
|
|
+ print('Previous shape:', x_train.shape)
|
|
|
|
+ print('New shape:', x_train_transformed.shape)
|
|
|
|
+
|
|
|
|
+ # using specific features
|
|
|
|
+ model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
|
|
|
|
+ model = model.fit(x_train_transformed, y_train)
|
|
|
|
+
|
|
|
|
+ y_test_model= model.predict(x_test_transformed)
|
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
|
+
|
|
|
|
+ end = datetime.datetime.now()
|
|
|
|
+
|
|
|
|
+ diff = end - start
|
|
|
|
+ print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
|
|
|
|
+
|
|
|
|
+def main():
|
|
|
|
+
|
|
|
|
+ parser = argparse.ArgumentParser(description="Train and find using all data to use for model")
|
|
|
|
+
|
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
|
|
|
|
+ parser.add_argument('--output', type=str, help='output surrogate model name')
|
|
|
|
+
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
+
|
|
|
|
+ p_data_file = args.data
|
|
|
|
+ p_output = args.output
|
|
|
|
+
|
|
|
|
+ print(p_data_file)
|
|
|
|
+
|
|
|
|
+ # load data from file
|
|
|
|
+ x_train, y_train, x_test, y_test = loadDataset(p_data_file)
|
|
|
|
+
|
|
|
|
+ # train classical random forest
|
|
|
|
+ random_forest_model = train_predict_random_forest(x_train, y_train, x_test, y_test)
|
|
|
|
+
|
|
|
|
+ # train using select from model
|
|
|
|
+ train_predict_selector(random_forest_model, x_train, y_train, x_test, y_test)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
+ main()
|