Ver código fonte

Enable prediction script

Jérôme BUISINE 3 anos atrás
pai
commit
95dee086b1
1 arquivos alterados com 231 adições e 0 exclusões
  1. 231 0
      prediction/model_prediction_data_rf.py

+ 231 - 0
prediction/model_prediction_data_rf.py

@@ -0,0 +1,231 @@
+# main imports
+import numpy as np
+import pandas as pd
+import sys, os, argparse
+
+# image processing
+from PIL import Image
+from ipfml import utils
+from ipfml.processing import transform, segmentation
+
+import matplotlib.pyplot as plt
+from sklearn.model_selection import train_test_split
+from sklearn.model_selection import GridSearchCV
+from sklearn.linear_model import LogisticRegression
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
+
+import joblib
+import sklearn.svm as svm
+from sklearn.utils import shuffle
+from sklearn.metrics import accuracy_score, roc_auc_score
+from sklearn.model_selection import cross_val_score
+
+# model imports
+import joblib
+
+# modules and config imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+
+def write_progress(progress):
+    barWidth = 180
+
+    output_str = "["
+    pos = barWidth * progress
+    for i in range(barWidth):
+        if i < pos:
+           output_str = output_str + "="
+        elif i == pos:
+           output_str = output_str + ">"
+        else:
+            output_str = output_str + " "
+
+    output_str = output_str + "] " + str(int(progress * 100.0)) + " %\r"
+    print(output_str)
+    sys.stdout.write("\033[F")
+
+def loadDataset(filename, n_step = 20):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    # scene_name; zone_id; image_index_end; label; data
+    head, folder_data = os.path.split(filename)
+    dataset_train = pd.read_csv(os.path.join(filename, folder_data + '.train'), header=None, sep=";")
+    dataset_test = pd.read_csv(os.path.join(filename, folder_data + '.test'), header=None, sep=";")
+
+    # default first shuffle of data
+    dataset_train = shuffle(dataset_train)
+    dataset_test = shuffle(dataset_test)
+
+    dataset_train = dataset_train[dataset_train.iloc[:, 2] % n_step == 0]
+    dataset_test = dataset_test[dataset_test.iloc[:, 2] % n_step == 0]
+
+    # get dataset with equal number of classes occurences
+    noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1]
+    not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0]
+    #nb_noisy_train = len(noisy_df_train.index)
+
+    noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1]
+    not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0]
+    #nb_noisy_test = len(noisy_df_test.index)
+
+    # use of all data
+    final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
+    final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
+
+    # shuffle data another time
+    final_df_train = shuffle(final_df_train)
+    final_df_test = shuffle(final_df_test)
+
+    # use of the whole data set for training
+    x_dataset_train = final_df_train.iloc[:, 4:]
+    x_dataset_test = final_df_test.iloc[:, 4:]
+
+    y_dataset_train = final_df_train.iloc[:, 3]
+    y_dataset_test = final_df_test.iloc[:, 3]
+
+    return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
+
+
+def train_model(p_data_file, p_solution):
+
+    x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test = loadDataset(p_data_file)
+
+    # get indices of filters data to use (filters selection from solution)
+    indices = []
+
+    print(p_solution)
+    for index, value in enumerate(p_solution): 
+        if value == 1: 
+            indices.append(index) 
+
+    print(f'Selected indices are: {indices}')
+    print(f"Train dataset size {len(x_dataset_train)}")
+    print(f"Test dataset size {len(x_dataset_test)}")
+
+    x_dataset_train = x_dataset_train.iloc[:, indices]
+    x_dataset_test =  x_dataset_test.iloc[:, indices]
+
+    print("-------------------------------------------")
+    # model = mdl.get_trained_model(p_choice, x_dataset_train, y_dataset_train)
+    model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
+    model.fit(x_dataset_train, y_dataset_train)
+    #######################
+    # 3. Fit model : use of cross validation to fit model
+    #######################
+    val_scores = cross_val_score(model, x_dataset_train, y_dataset_train, cv=5)
+    print("Accuracy: %0.2f (+/- %0.2f)" % (val_scores.mean(), val_scores.std() * 2))
+
+    ######################
+    # 4. Metrics
+    ######################
+
+    y_train_model = model.predict(x_dataset_train)
+    y_test_model = model.predict(x_dataset_test)
+
+    train_accuracy = accuracy_score(y_dataset_train, y_train_model)
+    test_accuracy = accuracy_score(y_dataset_test, y_test_model)
+
+    train_auc = roc_auc_score(y_dataset_train, y_train_model)
+    test_auc = roc_auc_score(y_dataset_test, y_test_model)
+
+    ###################
+    # 5. Output : Print and write all information in csv
+    ###################
+
+    print("Train dataset size ", len(x_dataset_train))
+    print("Train acc: ", train_accuracy)
+    print("Train AUC: ", train_auc)
+    print("Test dataset size ", len(x_dataset_test))
+    print("Test acc: ", test_accuracy)
+    print("Test AUC: ", test_auc)
+
+    return model
+
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Read and compute entropy data file")
+
+    # parser.add_argument('--solution', type=str, help='entropy file data with estimated threshold to read and compute')
+    parser.add_argument('--data', type=str, help='dataset filename prefiloc (without .train and .test)', required=True)
+    # parser.add_argument('--dataset', type=str, help='datasets file to load and predict from')
+    parser.add_argument('--solution', type=str, help='Data of solution to specify filters to use')
+    parser.add_argument('--output', type=str, help="output folder")
+
+    args = parser.parse_args()
+
+    # p_model      = args.model
+    p_data_file  = args.data 
+    p_output     = args.output
+    p_solution   = list(map(int, args.solution.split(' ')))
+
+    # 2. load model and compile it
+    model = train_model(p_data_file, p_solution)
+
+    # begin prediction
+    if not os.path.exists(p_output):
+        os.makedirs(p_output)
+
+    scene_predictions = {}
+    data_lines = []
+
+    dataset_files = os.listdir(p_data_file)
+
+    for filename in dataset_files:
+        filename_path = os.path.join(p_data_file, filename)
+
+        with open(filename_path, 'r') as f:
+            for line in f.readlines():
+                data_lines.append(line)
+
+    nlines = len(data_lines)
+    ncounter = 0
+
+    for line in data_lines:
+        data = line.split(';')
+
+        scene_name = data[0]
+        zone_index = int(data[1])
+
+        if scene_name not in scene_predictions:
+            scene_predictions[scene_name] = []
+
+            for _ in range(16):
+                scene_predictions[scene_name].append([])
+
+        # prepare input data
+        # ToDo check data input
+        
+        input_data = np.array([ l.replace('\n', '').split(' ') for l in data[4:] ], 'float32').flatten()
+        # print(input_data.flatten())
+        input_data = np.expand_dims(input_data, axis=0)
+                
+        prob = model.predict(input_data)[0]
+
+        scene_predictions[scene_name][zone_index].append(prob)
+
+        ncounter += 1
+        write_progress(float(ncounter / nlines))
+
+
+    # 6. save predictions results
+    for key, blocks_predictions in scene_predictions.items():
+
+        output_file = os.path.join(p_output, key + '.csv')
+
+        f = open(output_file, 'w')
+        for i, data in enumerate(blocks_predictions):
+            f.write(key + ';')
+            f.write(str(i) + ';')
+
+            for v in data:
+                f.write(str(v) + ';')
+            
+            f.write('\n')
+        f.close()
+
+
+if __name__== "__main__":
+    main()