Parcourir la source

custom find attributes script

Jérôme BUISINE il y a 4 ans
Parent
commit
a356408f7c
2 fichiers modifiés avec 204 ajouts et 2 suppressions
  1. 4 2
      find_best_attributes.py
  2. 200 0
      find_best_attributes_30.py

+ 4 - 2
find_best_attributes.py

@@ -41,7 +41,7 @@ from macop.callbacks.UCBCheckpoint import UCBCheckpoint
 # variables and parameters
 models_list         = cfg.models_names_list
 number_of_values    = 26
-ils_iteration       = 2000
+ils_iteration       = 4000
 ls_iteration        = 10
 
 # default validator
@@ -120,7 +120,8 @@ def main():
 
     # init solution (`n` attributes)
     def init():
-        return BinarySolution([], number_of_values).random(validator)
+        return BinarySolution([], 26
+        ).random(validator)
 
     # define evaluate function here (need of data information)
     def evaluate(solution):
@@ -163,6 +164,7 @@ def main():
     policy = UCBPolicy(operators)
 
     algo = ILS(init, evaluate, operators, policy, validator, True)
+    
     algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
     algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
 

+ 200 - 0
find_best_attributes_30.py

@@ -0,0 +1,200 @@
+# main imports
+import os
+import sys
+import argparse
+import pandas as pd
+import numpy as np
+import logging
+import datetime
+
+# model imports
+from sklearn.model_selection import train_test_split
+from sklearn.model_selection import GridSearchCV
+from sklearn.linear_model import LogisticRegression
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
+
+import joblib
+import sklearn.svm as svm
+from sklearn.utils import shuffle
+from sklearn.metrics import roc_auc_score
+from sklearn.model_selection import cross_val_score
+
+# modules and config imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+import custom_config as cfg
+import models as mdl
+
+from macop.algorithms.mono.IteratedLocalSearch import IteratedLocalSearch as ILS
+from macop.solutions.BinarySolution import BinarySolution
+
+from macop.operators.mutators.SimpleMutation import SimpleMutation
+from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
+from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
+from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
+
+from macop.operators.policies.UCBPolicy import UCBPolicy
+
+from macop.callbacks.BasicCheckpoint import BasicCheckpoint
+from macop.callbacks.UCBCheckpoint import UCBCheckpoint
+
+# variables and parameters
+models_list         = cfg.models_names_list
+number_of_values    = 30
+ils_iteration       = 4000
+ls_iteration        = 10
+
+# default validator
+def validator(solution):
+
+    if list(solution.data).count(1) < 5:
+        return False
+
+    return True
+
+def loadDataset(filename):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
+    dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
+
+    # default first shuffle of data
+    dataset_train = shuffle(dataset_train)
+    dataset_test = shuffle(dataset_test)
+
+    # get dataset with equal number of classes occurences
+    noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
+    not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
+    #nb_noisy_train = len(noisy_df_train.index)
+
+    noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
+    not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
+    #nb_noisy_test = len(noisy_df_test.index)
+
+    # use of all data
+    final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
+    final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
+
+    # shuffle data another time
+    final_df_train = shuffle(final_df_train)
+    final_df_test = shuffle(final_df_test)
+
+    # use of the whole data set for training
+    x_dataset_train = final_df_train.iloc[:,1:]
+    x_dataset_test = final_df_test.iloc[:,1:]
+
+    y_dataset_train = final_df_train.iloc[:,0]
+    y_dataset_test = final_df_test.iloc[:,0]
+
+    return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
+
+    parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
+    parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list, required=True)
+    parser.add_argument('--length', type=str, help='max data length (need to be specify for evaluator)', required=True)
+
+    args = parser.parse_args()
+
+    p_data_file = args.data
+    p_choice    = args.choice
+    p_length    = args.length
+
+    global number_of_values
+    number_of_values = p_length
+
+    print(p_data_file)
+
+    # load data from file
+    x_train, y_train, x_test, y_test = loadDataset(p_data_file)
+
+    # create `logs` folder if necessary
+    if not os.path.exists(cfg.output_logs_folder):
+        os.makedirs(cfg.output_logs_folder)
+
+    logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/%s.log' % p_data_file.split('/')[-1], level=logging.DEBUG)
+
+    # init solution (`n` attributes)
+    def init():
+        return BinarySolution([], 30
+        ).random(validator)
+
+    # define evaluate function here (need of data information)
+    def evaluate(solution):
+
+        start = datetime.datetime.now()
+        # get indices of filters data to use (filters selection from solution)
+        indices = []
+
+        for index, value in enumerate(solution.data): 
+            if value == 1: 
+                indices.append(index) 
+
+        # keep only selected filters from solution
+        x_train_filters = x_train.iloc[:, indices]
+        y_train_filters = y_train
+        x_test_filters = x_test.iloc[:, indices]
+
+        # TODO : use of GPU implementation of SVM
+        model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+        
+        y_test_model = model.predict(x_test_filters)
+        test_roc_auc = roc_auc_score(y_test, y_test_model)
+
+        end = datetime.datetime.now()
+
+        diff = end - start
+
+        print("Evaluation took :", divmod(diff.days * 86400 + diff.seconds, 60))
+
+        return test_roc_auc
+
+    if not os.path.exists(cfg.output_backup_folder):
+        os.makedirs(cfg.output_backup_folder)
+
+    backup_file_path = os.path.join(cfg.output_backup_folder, p_data_file.split('/')[-1] + '.csv')
+    ucb_backup_file_path = os.path.join(cfg.output_backup_folder, p_data_file.split('/')[-1] + '_ucbPolicy.csv')
+
+    # prepare optimization algorithm
+    operators = [SimpleBinaryMutation(), SimpleMutation(), SimpleCrossover(), RandomSplitCrossover()]
+    policy = UCBPolicy(operators)
+
+    algo = ILS(init, evaluate, operators, policy, validator, True)
+    
+    algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
+    algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
+
+    bestSol = algo.run(ils_iteration, ls_iteration)
+
+    # print best solution found
+    print("Found ", bestSol)
+
+    # save model information into .csv file
+    if not os.path.exists(cfg.results_information_folder):
+        os.makedirs(cfg.results_information_folder)
+
+    filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
+
+    filters_counter = 0
+    # count number of filters
+    for index, item in enumerate(bestSol.data):
+        if index != 0 and index % 2 == 1:
+
+            # if two attributes are used
+            if item == 1 or bestSol.data[index - 1] == 1:
+                filters_counter += 1
+
+
+    line_info = p_data_file + ';' + str(ils_iteration) + ';' + str(ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness())
+    with open(filename_path, 'a') as f:
+        f.write(line_info + '\n')
+    
+    print('Result saved into %s' % filename_path)
+
+
+if __name__ == "__main__":
+    main()