|
@@ -0,0 +1,200 @@
|
|
|
+# main imports
|
|
|
+import os
|
|
|
+import sys
|
|
|
+import argparse
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+import logging
|
|
|
+import datetime
|
|
|
+
|
|
|
+# model imports
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.model_selection import GridSearchCV
|
|
|
+from sklearn.linear_model import LogisticRegression
|
|
|
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
|
|
|
+
|
|
|
+import joblib
|
|
|
+import sklearn.svm as svm
|
|
|
+from sklearn.utils import shuffle
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+
|
|
|
+# modules and config imports
|
|
|
+sys.path.insert(0, '') # trick to enable import of main folder module
|
|
|
+
|
|
|
+import custom_config as cfg
|
|
|
+import models as mdl
|
|
|
+
|
|
|
+from macop.algorithms.mono.IteratedLocalSearch import IteratedLocalSearch as ILS
|
|
|
+from macop.solutions.BinarySolution import BinarySolution
|
|
|
+
|
|
|
+from macop.operators.mutators.SimpleMutation import SimpleMutation
|
|
|
+from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
|
|
|
+from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
|
|
|
+from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
|
|
|
+
|
|
|
+from macop.operators.policies.UCBPolicy import UCBPolicy
|
|
|
+
|
|
|
+from macop.callbacks.BasicCheckpoint import BasicCheckpoint
|
|
|
+from macop.callbacks.UCBCheckpoint import UCBCheckpoint
|
|
|
+
|
|
|
+# variables and parameters
|
|
|
+models_list = cfg.models_names_list
|
|
|
+number_of_values = 30
|
|
|
+ils_iteration = 4000
|
|
|
+ls_iteration = 10
|
|
|
+
|
|
|
+# default validator
|
|
|
+def validator(solution):
|
|
|
+
|
|
|
+ if list(solution.data).count(1) < 5:
|
|
|
+ return False
|
|
|
+
|
|
|
+ return True
|
|
|
+
|
|
|
+def loadDataset(filename):
|
|
|
+
|
|
|
+ ########################
|
|
|
+ # 1. Get and prepare data
|
|
|
+ ########################
|
|
|
+ dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
|
|
|
+ dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
|
|
|
+
|
|
|
+ # default first shuffle of data
|
|
|
+ dataset_train = shuffle(dataset_train)
|
|
|
+ dataset_test = shuffle(dataset_test)
|
|
|
+
|
|
|
+ # get dataset with equal number of classes occurences
|
|
|
+ noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
|
|
|
+ not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
|
|
|
+ #nb_noisy_train = len(noisy_df_train.index)
|
|
|
+
|
|
|
+ noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
|
|
|
+ not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
|
|
|
+ #nb_noisy_test = len(noisy_df_test.index)
|
|
|
+
|
|
|
+ # use of all data
|
|
|
+ final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
|
|
|
+ final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
|
|
|
+
|
|
|
+ # shuffle data another time
|
|
|
+ final_df_train = shuffle(final_df_train)
|
|
|
+ final_df_test = shuffle(final_df_test)
|
|
|
+
|
|
|
+ # use of the whole data set for training
|
|
|
+ x_dataset_train = final_df_train.iloc[:,1:]
|
|
|
+ x_dataset_test = final_df_test.iloc[:,1:]
|
|
|
+
|
|
|
+ y_dataset_train = final_df_train.iloc[:,0]
|
|
|
+ y_dataset_test = final_df_test.iloc[:,0]
|
|
|
+
|
|
|
+ return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
|
|
|
+
|
|
|
+ parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
|
|
|
+ parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list, required=True)
|
|
|
+ parser.add_argument('--length', type=str, help='max data length (need to be specify for evaluator)', required=True)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ p_data_file = args.data
|
|
|
+ p_choice = args.choice
|
|
|
+ p_length = args.length
|
|
|
+
|
|
|
+ global number_of_values
|
|
|
+ number_of_values = p_length
|
|
|
+
|
|
|
+ print(p_data_file)
|
|
|
+
|
|
|
+ # load data from file
|
|
|
+ x_train, y_train, x_test, y_test = loadDataset(p_data_file)
|
|
|
+
|
|
|
+ # create `logs` folder if necessary
|
|
|
+ if not os.path.exists(cfg.output_logs_folder):
|
|
|
+ os.makedirs(cfg.output_logs_folder)
|
|
|
+
|
|
|
+ logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/%s.log' % p_data_file.split('/')[-1], level=logging.DEBUG)
|
|
|
+
|
|
|
+ # init solution (`n` attributes)
|
|
|
+ def init():
|
|
|
+ return BinarySolution([], 30
|
|
|
+ ).random(validator)
|
|
|
+
|
|
|
+ # define evaluate function here (need of data information)
|
|
|
+ def evaluate(solution):
|
|
|
+
|
|
|
+ start = datetime.datetime.now()
|
|
|
+ # get indices of filters data to use (filters selection from solution)
|
|
|
+ indices = []
|
|
|
+
|
|
|
+ for index, value in enumerate(solution.data):
|
|
|
+ if value == 1:
|
|
|
+ indices.append(index)
|
|
|
+
|
|
|
+ # keep only selected filters from solution
|
|
|
+ x_train_filters = x_train.iloc[:, indices]
|
|
|
+ y_train_filters = y_train
|
|
|
+ x_test_filters = x_test.iloc[:, indices]
|
|
|
+
|
|
|
+ # TODO : use of GPU implementation of SVM
|
|
|
+ model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
|
|
|
+
|
|
|
+ y_test_model = model.predict(x_test_filters)
|
|
|
+ test_roc_auc = roc_auc_score(y_test, y_test_model)
|
|
|
+
|
|
|
+ end = datetime.datetime.now()
|
|
|
+
|
|
|
+ diff = end - start
|
|
|
+
|
|
|
+ print("Evaluation took :", divmod(diff.days * 86400 + diff.seconds, 60))
|
|
|
+
|
|
|
+ return test_roc_auc
|
|
|
+
|
|
|
+ if not os.path.exists(cfg.output_backup_folder):
|
|
|
+ os.makedirs(cfg.output_backup_folder)
|
|
|
+
|
|
|
+ backup_file_path = os.path.join(cfg.output_backup_folder, p_data_file.split('/')[-1] + '.csv')
|
|
|
+ ucb_backup_file_path = os.path.join(cfg.output_backup_folder, p_data_file.split('/')[-1] + '_ucbPolicy.csv')
|
|
|
+
|
|
|
+ # prepare optimization algorithm
|
|
|
+ operators = [SimpleBinaryMutation(), SimpleMutation(), SimpleCrossover(), RandomSplitCrossover()]
|
|
|
+ policy = UCBPolicy(operators)
|
|
|
+
|
|
|
+ algo = ILS(init, evaluate, operators, policy, validator, True)
|
|
|
+
|
|
|
+ algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
|
|
|
+ algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
|
|
|
+
|
|
|
+ bestSol = algo.run(ils_iteration, ls_iteration)
|
|
|
+
|
|
|
+ # print best solution found
|
|
|
+ print("Found ", bestSol)
|
|
|
+
|
|
|
+ # save model information into .csv file
|
|
|
+ if not os.path.exists(cfg.results_information_folder):
|
|
|
+ os.makedirs(cfg.results_information_folder)
|
|
|
+
|
|
|
+ filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
|
|
|
+
|
|
|
+ filters_counter = 0
|
|
|
+ # count number of filters
|
|
|
+ for index, item in enumerate(bestSol.data):
|
|
|
+ if index != 0 and index % 2 == 1:
|
|
|
+
|
|
|
+ # if two attributes are used
|
|
|
+ if item == 1 or bestSol.data[index - 1] == 1:
|
|
|
+ filters_counter += 1
|
|
|
+
|
|
|
+
|
|
|
+ line_info = p_data_file + ';' + str(ils_iteration) + ';' + str(ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness())
|
|
|
+ with open(filename_path, 'a') as f:
|
|
|
+ f.write(line_info + '\n')
|
|
|
+
|
|
|
+ print('Result saved into %s' % filename_path)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|