|
@@ -0,0 +1,103 @@
|
|
|
|
+import os, argparse
|
|
|
|
+import shutil
|
|
|
|
+
|
|
|
|
+open_ml_problems_folder = 'OpenML_v2'
|
|
|
|
+surrogate_data_path = 'data/surrogate/data/'
|
|
|
|
+
|
|
|
|
+k_params = [100, 150, 200]
|
|
|
|
+k_random = [0, 1]
|
|
|
|
+k_reinit = [0, 1]
|
|
|
|
+every_ls = 50
|
|
|
|
+
|
|
|
|
+n_times = 5
|
|
|
|
+
|
|
|
|
+def main():
|
|
|
|
+
|
|
|
|
+ parser = argparse.ArgumentParser(description="Find best features for each OpenML problems")
|
|
|
|
+
|
|
|
|
+ parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
|
|
|
|
+ parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
|
|
|
|
+
|
|
|
|
+ args = parser.parse_args()
|
|
|
|
+
|
|
|
|
+ p_ils = args.ils
|
|
|
|
+ p_ls = args.ls
|
|
|
|
+
|
|
|
|
+ open_ml_problems = sorted(os.listdir(open_ml_problems_folder))
|
|
|
|
+
|
|
|
|
+ for ml_problem in open_ml_problems:
|
|
|
|
+
|
|
|
|
+ # for each problem prepare specific pre-computed real solution file
|
|
|
|
+ ml_problem_name = ml_problem.replace('.csv', '')
|
|
|
|
+ ml_problem_path = os.path.join(open_ml_problems_folder, ml_problem)
|
|
|
|
+
|
|
|
|
+ # ml_surrogate_command = f"python find_best_attributes_surrogate_openML_multi_specific.py " \
|
|
|
|
+ # f"--data {ml_problem_path} " \
|
|
|
|
+ # f"--ils {p_ils} " \
|
|
|
|
+ # f"--ls {p_ls} " \
|
|
|
|
+ # f"--output {ml_problem_name} " \
|
|
|
|
+ # f"--generate_only 1"
|
|
|
|
+ # print(f'Running extraction real evaluations data for {ml_problem_name}')
|
|
|
|
+ # os.system(ml_surrogate_command)
|
|
|
|
+
|
|
|
|
+ # real_evaluation_data_file_path = os.path.join(surrogate_data_path, ml_problem_name)
|
|
|
|
+
|
|
|
|
+ # for each multi param:
|
|
|
|
+ # - copy precomputed real_evaluation_data_file
|
|
|
|
+ # - run new instance using specific data
|
|
|
|
+ for k in k_params:
|
|
|
|
+ for k_r in k_random:
|
|
|
|
+ # for k_init in k_reinit:
|
|
|
|
+
|
|
|
|
+ # if not use of k_reinit and use of random, then run multiple times this instance to do mean later
|
|
|
|
+ #if k_init == 0 and k_r == 1:
|
|
|
|
+ if k_r == 1:
|
|
|
|
+
|
|
|
|
+ for i in range(n_times):
|
|
|
|
+
|
|
|
|
+ str_index = str(i)
|
|
|
|
+
|
|
|
|
+ while len(str_index) < 3:
|
|
|
|
+ str_index = "0" + str_index
|
|
|
|
+
|
|
|
|
+ output_problem_name = f'{ml_problem_name}_everyLS_{every_ls}_k{k}_random{k_r}_{str_index}'
|
|
|
|
+
|
|
|
|
+ # copy pre-computed real evaluation data for this instance
|
|
|
|
+ current_output_real_eval_path = os.path.join(surrogate_data_path, output_problem_name)
|
|
|
|
+ # shutil.copy2(real_evaluation_data_file_path, current_output_real_eval_path)
|
|
|
|
+
|
|
|
|
+ ml_surrogate_multi_command = f"python find_best_attributes_surrogate_openML_multi_specific.py " \
|
|
|
|
+ f"--data {ml_problem_path} " \
|
|
|
|
+ f"--ils {p_ils} " \
|
|
|
|
+ f"--ls {p_ls} " \
|
|
|
|
+ f"--every_ls {every_ls} " \
|
|
|
|
+ f"--k_division {k} " \
|
|
|
|
+ f"--k_random {k_r} " \
|
|
|
|
+ f"--output {output_problem_name}"
|
|
|
|
+ #f"--k_dynamic {k_init} " \
|
|
|
|
+ print(f'Running extraction data for {ml_problem_name} with [ils: {p_ils}, ls: {p_ls}, k: {k}, k_r: {k_r}, i: {i}]')
|
|
|
|
+ os.system(ml_surrogate_multi_command)
|
|
|
|
+
|
|
|
|
+ else:
|
|
|
|
+ output_problem_name = f'{ml_problem_name}_everyLS_{every_ls}_k{k}_random{k_r}'
|
|
|
|
+
|
|
|
|
+ # copy pre-computed real evaluation data for this instance
|
|
|
|
+ current_output_real_eval_path = os.path.join(surrogate_data_path, output_problem_name)
|
|
|
|
+ # shutil.copy2(real_evaluation_data_file_path, current_output_real_eval_path)
|
|
|
|
+
|
|
|
|
+ ml_surrogate_multi_command = f"python find_best_attributes_surrogate_openML_multi_specific.py " \
|
|
|
|
+ f"--data {ml_problem_path} " \
|
|
|
|
+ f"--ils {p_ils} " \
|
|
|
|
+ f"--ls {p_ls} " \
|
|
|
|
+ f"--every_ls {every_ls} " \
|
|
|
|
+ f"--k_division {k} " \
|
|
|
|
+ f"--k_random {k_r} " \
|
|
|
|
+ f"--output {output_problem_name}"
|
|
|
|
+ #f"--k_dynamic {k_init} " \
|
|
|
|
+ print(f'Running extraction data for {ml_problem_name} with [ils: {p_ils}, ls: {p_ls}, k: {k}, k_r: {k_r}]')
|
|
|
|
+ os.system(ml_surrogate_multi_command)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == "__main__":
|
|
|
|
+ main()
|