123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- # main imports
- import os
- import sys
- import argparse
- import pandas as pd
- import numpy as np
- import logging
- import datetime
- import random
- # model imports
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import GridSearchCV
- from sklearn.linear_model import LogisticRegression
- from sklearn.ensemble import RandomForestClassifier, VotingClassifier
- from sklearn.feature_selection import SelectFromModel
- import joblib
- import sklearn.svm as svm
- from sklearn.utils import shuffle
- from sklearn.metrics import roc_auc_score
- from sklearn.model_selection import cross_val_score
- from sklearn.feature_selection import RFECV
- # modules and config imports
- sys.path.insert(0, '') # trick to enable import of main folder module
- import custom_config as cfg
- import models as mdl
- #from sklearn.ensemble import RandomForestClassifier
- def loadDataset(filename):
- ########################
- # 1. Get and prepare data
- ########################
- # scene_name; zone_id; image_index_end; label; data
- dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
- dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
- # default first shuffle of data
- dataset_train = shuffle(dataset_train)
- dataset_test = shuffle(dataset_test)
- # get dataset with equal number of classes occurences
- noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1]
- not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0]
- #nb_noisy_train = len(noisy_df_train.index)
- noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1]
- not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0]
- #nb_noisy_test = len(noisy_df_test.index)
- # use of all data
- final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
- final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
- # shuffle data another time
- final_df_train = shuffle(final_df_train)
- final_df_test = shuffle(final_df_test)
- # use of the whole data set for training
- x_dataset_train = final_df_train.iloc[:, 4:]
- x_dataset_test = final_df_test.iloc[:, 4:]
- y_dataset_train = final_df_train.iloc[:, 3]
- y_dataset_test = final_df_test.iloc[:, 3]
- return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
- def train_predict_random_forest(x_train, y_train, x_test, y_test):
- print('Start training Random forest model')
- start = datetime.datetime.now()
-
- # model = _get_best_model(x_train_filters, y_train_filters)
- random_forest_model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
- # No need to learn
- random_forest_model = random_forest_model.fit(x_train, y_train)
-
- y_test_model = random_forest_model.predict(x_test)
- test_roc_auc = roc_auc_score(y_test, y_test_model)
- end = datetime.datetime.now()
- diff = end - start
- print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
- return random_forest_model
- def train_predict_selector(model, x_train, y_train, x_test, y_test):
- start = datetime.datetime.now()
- print("Using Select from model with Random Forest")
- selector = RFECV(estimator=model, min_features_to_select=13, verbose=1, n_jobs=4)
- selector.fit(x_train, y_train)
- x_train_transformed = selector.transform(x_train)
- x_test_transformed = selector.transform(x_test)
- print('Previous shape:', x_train.shape)
- print('New shape:', x_train_transformed.shape)
- # using specific features
- model = RandomForestClassifier(n_estimators=500, class_weight='balanced', bootstrap=True, max_samples=0.75, n_jobs=-1)
- model = model.fit(x_train_transformed, y_train)
- y_test_model= model.predict(x_test_transformed)
- test_roc_auc = roc_auc_score(y_test, y_test_model)
- end = datetime.datetime.now()
- diff = end - start
- print("Evaluation took: {}, AUC score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
- def main():
- parser = argparse.ArgumentParser(description="Train and find using all data to use for model")
- parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
- parser.add_argument('--output', type=str, help='output surrogate model name')
- args = parser.parse_args()
- p_data_file = args.data
- p_output = args.output
- print(p_data_file)
- # load data from file
- x_train, y_train, x_test, y_test = loadDataset(p_data_file)
- # train classical random forest
- random_forest_model = train_predict_random_forest(x_train, y_train, x_test, y_test)
- # train using select from model
- train_predict_selector(random_forest_model, x_train, y_train, x_test, y_test)
- if __name__ == "__main__":
- main()
|