Study of synthesis images noise detection using 26 attributes
Jérôme BUISINE cb6026f2c7 Add of 26 features metric | 5 年之前 | |
---|---|---|
analysis | 5 年之前 | |
modules | 5 年之前 | |
.gitignore | 5 年之前 | |
LICENSE | 5 年之前 | |
README.md | 5 年之前 | |
display_simulation_curves.py | 5 年之前 | |
generateAndTrain_maxwell_custom.sh | 5 年之前 | |
generateAndTrain_maxwell_custom_center.sh | 5 年之前 | |
generateAndTrain_maxwell_custom_split.sh | 5 年之前 | |
generate_all_data.py | 5 年之前 | |
generate_all_simulate_curves.sh | 5 年之前 | |
generate_data_model.py | 5 年之前 | |
generate_data_model_random.py | 5 年之前 | |
generate_data_model_random_center.py | 5 年之前 | |
generate_data_model_random_split.py | 5 年之前 | |
predict_noisy_image_svd.py | 5 年之前 | |
predict_seuil_expe.py | 5 年之前 | |
predict_seuil_expe_maxwell.py | 5 年之前 | |
predict_seuil_expe_maxwell_curve.py | 5 年之前 | |
prediction_scene.py | 5 年之前 | |
requirements.txt | 5 年之前 | |
runAll_maxwell.sh | 5 年之前 | |
runAll_maxwell_custom.sh | 5 年之前 | |
runAll_maxwell_custom_center.sh | 5 年之前 | |
runAll_maxwell_custom_split.sh | 5 年之前 | |
run_maxwell_simulation.sh | 5 年之前 | |
run_maxwell_simulation_custom.sh | 5 年之前 | |
train_model.py | 5 年之前 |
Noise detection on synthesis images with 26 attributes obtained using few filters.
Filters list:
pip install -r requirements.txt
Generate all needed data for each metrics (which requires the the whole dataset. In order to get it, you need to contact us).
python generate_all_data.py --metric all
Remark: Note here that all python script have --help command.
python generate_data_model.py --help
python generate_data_model.py --output xxxx --interval 0,20 --kind svdne --scenes "A, B, D" --zones "0, 1, 2" --percent 0.7 --sep: --rowindex 1 --custom custom_min_max_filename
Parameters explained:
This is an example of how to train a model
python train_model.py --data 'data/xxxx' --output 'model_file_to_save' --choice 'model_choice'
Expected values for the choice parameter are ['svm_model', 'ensemble_model', 'ensemble_model_v2'].
Now we have a model trained, we can use it with an image as input:
python predict_noisy_image_svd.py --image path/to/image.png --interval "x,x" --model saved_models/xxxxxx.joblib --metric 'lab' --mode 'svdn' --custom 'min_max_filename'
The model will return only 0 or 1:
All SVD metrics developed need:
Now we have a model trained, we can use it with an image as input:
python prediction_scene.py --data path/to/xxxx.csv --model saved_model/xxxx.joblib --output xxxxx --scene xxxx
Remark: scene parameter expected need to be the correct name of the Scene.
All scripts with names display_*.py are used to display data information or results.
Just use --help option to get more information.
All scripts named predict_seuil_expe*.py are used to simulate model prediction during rendering process. Do not forget the custom parameter filename if necessary.
Once you have simulation done. Checkout your threshold_map/%MODEL_NAME%/simulation_curves_zones_*/ folder and use it with help of display_simulation_curves.py script.
All others bash scripts are used to combine and run multiple model combinations...