Study of synthesis images noise detection using 26 attributes
Jérôme BUISINE e4f5839e36 Use surrogate from scract as proposed framework | il y a 4 ans | |
---|---|---|
analysis | il y a 5 ans | |
generate | il y a 4 ans | |
modules @ cebf2adbf1 | il y a 5 ans | |
optimization | il y a 4 ans | |
prediction | il y a 4 ans | |
utils | il y a 4 ans | |
wsao @ 875bbdcee6 | il y a 4 ans | |
.gitignore | il y a 5 ans | |
.gitmodules | il y a 4 ans | |
LICENSE | il y a 5 ans | |
README.md | il y a 4 ans | |
custom_config.py | il y a 4 ans | |
data_attributes.py | il y a 4 ans | |
find_best_attributes.py | il y a 4 ans | |
find_best_attributes_from.py | il y a 4 ans | |
find_best_attributes_surrogate.py | il y a 4 ans | |
find_best_filters.py | il y a 4 ans | |
models.py | il y a 4 ans | |
requirements.txt | il y a 4 ans | |
train_model.py | il y a 4 ans | |
train_model_attributes.py | il y a 4 ans | |
train_model_filters.py | il y a 4 ans |
Noise detection on synthesis images with 26 attributes obtained using few filters.
Filters list:
pip install -r requirements.txt
You need database which respects this structure:
modules/config/global_config.py
run/runAll_*.sh
script.model_comparisons.csv
file used for store models performance.