Syntesis images noise detection using CNN approach
Jérôme BUISINE 9dfae0dd22 Merge branch 'release/v0.1.5' | il y a 5 ans | |
---|---|---|
display | il y a 5 ans | |
generate | il y a 5 ans | |
modules @ d5de038bdc | il y a 5 ans | |
prediction | il y a 5 ans | |
.gitignore | il y a 5 ans | |
.gitmodules | il y a 5 ans | |
LICENSE | il y a 5 ans | |
README.md | il y a 5 ans | |
__init__.py | il y a 5 ans | |
custom_config.py | il y a 5 ans | |
requirements.txt | il y a 5 ans | |
run.sh | il y a 5 ans | |
run_maxwell_simulation_custom.sh | il y a 5 ans | |
train_model.py | il y a 5 ans |
git clone --recursive https://github.com/prise-3d/Thesis-NoiseDetection-CNN.git XXXXX
pip install -r requirements.txt
Generate reconstructed data from specific method of reconstruction (run only once time or clean data folder before):
python generate/generate_reconstructed_data.py -h
Generate custom dataset from one reconstructed method or multiples (implemented later)
python generate/generate_dataset.py -h
List of expected parameter by reconstruction method:
Example:
python generate/generate_dataset.py --output data/output_data_filename --features "svd_reconstruction, ipca_reconstruction, fast_ica_reconstruction" --renderer "maxwell" --scenes "A, D, G, H" --params "100, 200 :: 50, 10 :: 50" --nb_zones 10 --random 1
Then, train model using your custom dataset:
python train_model --data data/custom_dataset --output output_model_name
This project contains modules:
All these modules will be enhanced during development of the project