Parcourir la source

Merge branch 'feature/Renormalization' into develop

Jérôme BUISINE il y a 6 ans
Parent
commit
391c470140

+ 4 - 5
display_scenes_zones.py

@@ -14,8 +14,7 @@ import time
 import json
 
 from PIL import Image
-from ipfml import processing
-from ipfml import metrics
+from ipfml import processing, metrics, utils
 from skimage import color
 import matplotlib.pyplot as plt
 
@@ -150,7 +149,7 @@ def display_data_scenes(data_type, p_scene, p_kind):
 
                         img_gray = np.array(color.rgb2gray(np.asarray(block))*255, 'uint8')
                         img_mscn = processing.calculate_mscn_coefficients(img_gray, 7)
-                        img_mscn_norm = processing.normalize_2D_arr(img_mscn)
+                        img_mscn_norm = utils.normalize_2D_arr(img_mscn)
 
                         img_mscn_gray = np.array(img_mscn_norm*255, 'uint8')
 
@@ -200,7 +199,7 @@ def display_data_scenes(data_type, p_scene, p_kind):
                     # modify data depending mode
 
                     if p_kind == 'svdn':
-                        data = processing.normalize_arr(data)
+                        data = utils.normalize_arr(data)
 
                     if p_kind == 'svdne':
                         path_min_max = os.path.join(path, data_type + min_max_filename)
@@ -209,7 +208,7 @@ def display_data_scenes(data_type, p_scene, p_kind):
                             min_val = float(f.readline())
                             max_val = float(f.readline())
 
-                        data = processing.normalize_arr_with_range(data, min_val, max_val)
+                        data = utils.normalize_arr_with_range(data, min_val, max_val)
 
                     # append of data
                     images_data.append(data)

+ 2 - 3
display_scenes_zones_shifted.py

@@ -14,8 +14,7 @@ import time
 import json
 
 from PIL import Image
-from ipfml import processing
-from ipfml import metrics
+from ipfml import processing, metrics, utils
 from skimage import color
 import matplotlib.pyplot as plt
 
@@ -136,7 +135,7 @@ def display_data_scenes(p_scene, p_bits, p_shifted):
                     ##################
 
                     # modify data depending mode
-                    data = processing.normalize_arr(data)
+                    data = utils.normalize_arr(data)
                     images_data.append(data)
 
                 zones_images_data.append(images_data)

+ 3 - 2
display_simulation_curves.py

@@ -27,7 +27,7 @@ def display_curves(folder_path):
         df = pd.read_csv(path_file, header=None, sep=";")
 
 
-        fig=plt.figure(figsize=(8, 8))
+        fig=plt.figure(figsize=(35, 22))
         fig.suptitle("Detection simulation for " + scene_names[id] + " scene", fontsize=20)
 
         for index, row in df.iterrows():
@@ -61,7 +61,8 @@ def display_curves(folder_path):
             plt.xticks(x, x_labels, rotation=45)
             plt.ylim(-1, 2)
 
-        plt.show()
+        plt.savefig(os.path.join(folder_path, scene_names[id] + '_simulation_curve.png'))
+        #plt.show()
 
 def main():
 

+ 325 - 0
display_svd_data_scene.py

@@ -0,0 +1,325 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Sep 14 21:02:42 2018
+
+@author: jbuisine
+"""
+
+from __future__ import print_function
+import sys, os, getopt
+
+import numpy as np
+import random
+import time
+import json
+
+from PIL import Image
+from ipfml import processing, metrics, utils
+import ipfml.iqa.fr as fr_iqa
+
+from skimage import color
+
+import matplotlib.pyplot as plt
+from modules.utils.data import get_svd_data
+
+from modules.utils import config as cfg
+
+# getting configuration information
+config_filename     = cfg.config_filename
+zone_folder         = cfg.zone_folder
+min_max_filename    = cfg.min_max_filename_extension
+
+# define all scenes values
+scenes_list         = cfg.scenes_names
+scenes_indices      = cfg.scenes_indices
+choices             = cfg.normalization_choices
+path                = cfg.dataset_path
+zones               = cfg.zones_indices
+seuil_expe_filename = cfg.seuil_expe_filename
+
+metric_choices      = cfg.metric_choices_labels
+
+max_nb_bits = 8
+
+error_data_choices  = ['mae', 'mse', 'ssim', 'psnr']
+
+
+def get_error_distance(p_error, y_true, y_test):
+
+    noise_method = None
+    function_name = p_error
+
+    try:
+        error_method = getattr(fr_iqa, function_name)
+    except AttributeError:
+        raise NotImplementedError("Error `{}` not implement `{}`".format(fr_iqa.__name__, function_name))
+
+    return error_method(y_true, y_test)
+
+
+
+def display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step, p_norm, p_error, p_ylim):
+    """
+    @brief Method which gives information about svd curves from zone of picture
+    @param p_scene, scene expected to show svd values
+    @param p_interval, interval [begin, end] of svd data to display
+    @param p_interval, interval [begin, end] of samples or minutes from render generation engine
+    @param p_metric, metric computed to show
+    @param p_mode, normalization's mode
+    @param p_norm, normalization or not of selected svd data
+    @param p_error, error metric used to display
+    @param p_ylim, ylim choice to better display of data
+    @return nothing
+    """
+
+    max_value_svd = 0
+    min_value_svd = sys.maxsize
+
+    image_indices = []
+
+    scenes = os.listdir(path)
+    # remove min max file from scenes folder
+    scenes = [s for s in scenes if min_max_filename not in s]
+
+    begin_data, end_data = p_interval
+    begin_index, end_index = p_indices
+
+    data_min_max_filename = os.path.join(path, p_metric + min_max_filename)
+
+    # go ahead each scenes
+    for id_scene, folder_scene in enumerate(scenes):
+
+        if p_scene == folder_scene:
+            scene_path = os.path.join(path, folder_scene)
+
+            config_file_path = os.path.join(scene_path, config_filename)
+
+            with open(config_file_path, "r") as config_file:
+                last_image_name = config_file.readline().strip()
+                prefix_image_name = config_file.readline().strip()
+                start_index_image = config_file.readline().strip()
+                end_index_image = config_file.readline().strip()
+                step_counter = int(config_file.readline().strip())
+
+            # construct each zones folder name
+            zones_folder = []
+
+            # get zones list info
+            for index in zones:
+                index_str = str(index)
+                if len(index_str) < 2:
+                    index_str = "0" + index_str
+
+                current_zone = "zone"+index_str
+                zones_folder.append(current_zone)
+
+            images_data = []
+            images_indices = []
+
+            threshold_learned_zones = []
+
+            for id, zone_folder in enumerate(zones_folder):
+
+                # get threshold information
+
+                zone_path = os.path.join(scene_path, zone_folder)
+                path_seuil = os.path.join(zone_path, seuil_expe_filename)
+
+                # open treshold path and get this information
+                with open(path_seuil, "r") as seuil_file:
+                    threshold_learned = int(seuil_file.readline().strip())
+                    threshold_learned_zones.append(threshold_learned)
+
+            current_counter_index = int(start_index_image)
+            end_counter_index = int(end_index_image)
+
+            threshold_mean = np.mean(np.asarray(threshold_learned_zones))
+            threshold_image_found = False
+
+            file_path = os.path.join(scene_path, prefix_image_name + "{}.png")
+
+            svd_data = []
+
+            while(current_counter_index <= end_counter_index):
+
+                current_counter_index_str = str(current_counter_index)
+
+                while len(start_index_image) > len(current_counter_index_str):
+                    current_counter_index_str = "0" + current_counter_index_str
+
+                if current_counter_index % p_step == 0:
+                    if current_counter_index >= begin_index and current_counter_index <= end_index:
+                        images_indices.append(current_counter_index_str)
+
+                    if threshold_mean < int(current_counter_index) and not threshold_image_found:
+
+                        threshold_image_found = True
+                        threshold_image_zone = current_counter_index_str
+
+                image_path = file_path.format(str(current_counter_index_str))
+                img = Image.open(image_path)
+
+                svd_values = get_svd_data(p_metric, img)
+
+                if p_norm:
+                    svd_values = svd_values[begin:end]
+
+                # update min max values
+                min_value = svd_values.min()
+                max_value = svd_values.max()
+
+                if min_value < min_value_svd:
+                    min_value_svd = min_value
+
+                if max_value > min_value_svd:
+                    max_value_svd = max_value
+
+                # keep in memory used data
+                if current_counter_index % p_step == 0:
+                    if current_counter_index >= begin_index and current_counter_index <= end_index:
+                        images_indices.append(current_counter_index_str)
+                        svd_data.append(svd_values)
+
+                    if threshold_mean < int(current_counter_index) and not threshold_image_found:
+
+                        threshold_image_found = True
+                        threshold_image_zone = current_counter_index_str
+
+                current_counter_index += step_counter
+                print('%.2f%%' % (current_counter_index / end_counter_index * 100))
+                sys.stdout.write("\033[F")
+
+
+            # all indices of picture to plot
+            print(images_indices)
+
+            previous_data = []
+            error_data = [0.]
+
+            for id, data in enumerate(svd_data):
+
+                current_data = data
+
+                if p_mode == 'svdn':
+                    current_data = utils.normalize_arr(current_data)
+
+                if p_mode == 'svdne':
+                    current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
+
+                images_data.append(current_data)
+
+                # use of whole image data for computation of ssim or psnr
+                if p_error == 'ssim' or p_error == 'psnr':
+                    image_path = file_path.format(str(current_id))
+                    current_data = np.asarray(Image.open(image_path))
+
+                if len(previous_data) > 0:
+
+                    current_error = get_error_distance(p_error, previous_data, current_data)
+                    error_data.append(current_error)
+
+                if len(previous_data) == 0:
+                    previous_data = current_data
+
+            # display all data using matplotlib (configure plt)
+            gridsize = (3, 2)
+
+            # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(30, 22))
+            fig = plt.figure(figsize=(30, 22))
+            ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
+            ax2 = plt.subplot2grid(gridsize, (2, 0), colspan=2)
+
+
+            ax1.set_title(p_scene + ' scene interval information SVD['+ str(begin_data) +', '+ str(end_data) +'], from scenes indices [' + str(begin_index) + ', '+ str(end_index) + ']' + p_metric + ' metric, ' + p_mode + ', with step of ' + str(p_step) + ', svd norm ' + str(p_norm), fontsize=20)
+            ax1.set_ylabel('Image samples or time (minutes) generation', fontsize=14)
+            ax1.set_xlabel('Vector features', fontsize=16)
+
+            for id, data in enumerate(images_data):
+
+                p_label = p_scene + '_' + str(images_indices[id]) + " | " + p_error + ": " + str(error_data[id])
+
+                if images_indices[id] == threshold_image_zone:
+                    ax1.plot(data, label=p_label, lw=4, color='red')
+                else:
+                    ax1.plot(data, label=p_label)
+
+            ax1.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14)
+
+            start_ylim, end_ylim = p_ylim
+            ax1.set_ylim(start_ylim, end_ylim)
+
+            ax2.set_title(p_error + " information for whole step images")
+            ax2.set_ylabel(p_error + ' error')
+            ax2.set_xlabel('Number of samples per pixels or times')
+            ax2.set_xticks(range(len(images_indices)))
+            ax2.set_xticklabels(list(map(int, images_indices)))
+            ax2.plot(error_data)
+
+            plt.show()
+
+def main():
+
+
+    # by default p_step value is 10 to enable all photos
+    p_step = 10
+    p_ylim = (0, 1)
+
+    if len(sys.argv) <= 1:
+        print('Run with default parameters...')
+        print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
+        sys.exit(2)
+    try:
+        opts, args = getopt.getopt(sys.argv[1:], "hs:i:i:z:l:m:s:n:e:y", ["help=", "scene=", "interval=", "indices=", "metric=", "mode=", "step=", "norm=", "error=", "ylim="])
+    except getopt.GetoptError:
+        # print help information and exit:
+        print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
+        sys.exit(2)
+    for o, a in opts:
+        if o == "-h":
+            print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
+            sys.exit()
+        elif o in ("-s", "--scene"):
+            p_scene = a
+
+            if p_scene not in scenes_indices:
+                assert False, "Invalid scene choice"
+            else:
+                p_scene = scenes_list[scenes_indices.index(p_scene)]
+        elif o in ("-i", "--interval"):
+            p_interval = list(map(int, a.split(',')))
+
+        elif o in ("-i", "--indices"):
+            p_indices = list(map(int, a.split(',')))
+
+        elif o in ("-m", "--metric"):
+            p_metric = a
+
+            if p_metric not in metric_choices:
+                assert False, "Invalid metric choice"
+
+        elif o in ("-m", "--mode"):
+            p_mode = a
+
+            if p_mode not in choices:
+                assert False, "Invalid normalization choice, expected ['svd', 'svdn', 'svdne']"
+
+        elif o in ("-s", "--step"):
+            p_step = int(a)
+
+        elif o in ("-n", "--norm"):
+            p_norm = int(a)
+
+        elif o in ("-e", "--error"):
+            p_error = a
+
+        elif o in ("-y", "--ylim"):
+            p_ylim = list(map(float, a.split(',')))
+
+        else:
+            assert False, "unhandled option"
+
+    display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step, p_norm, p_error, p_ylim)
+
+if __name__== "__main__":
+    main()

+ 49 - 27
display_svd_zone_scene.py

@@ -15,8 +15,7 @@ import time
 import json
 
 from PIL import Image
-from ipfml import processing
-from ipfml import metrics
+from ipfml import processing, metrics, utils
 from skimage import color
 
 import matplotlib.pyplot as plt
@@ -31,7 +30,7 @@ min_max_filename    = cfg.min_max_filename_extension
 
 # define all scenes values
 scenes_list         = cfg.scenes_names
-scenes_indexes      = cfg.scenes_indices
+scenes_indices      = cfg.scenes_indices
 choices             = cfg.normalization_choices
 path                = cfg.dataset_path
 zones               = cfg.zones_indices
@@ -41,14 +40,18 @@ metric_choices      = cfg.metric_choices_labels
 
 max_nb_bits = 8
 
-def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
+def display_svd_values(p_scene, p_interval, p_indices, p_zone, p_metric, p_mode, p_step, p_norm, p_ylim):
     """
     @brief Method which gives information about svd curves from zone of picture
     @param p_scene, scene expected to show svd values
+    @param p_interval, interval [begin, end] of svd data to display
     @param p_interval, interval [begin, end] of samples or minutes from render generation engine
     @param p_zone, zone's identifier of picture
     @param p_metric, metric computed to show
     @param p_mode, normalization's mode
+    @param p_step, step of images indices
+    @param p_norm, normalization or not of selected svd data
+    @param p_ylim, ylim choice to better display of data
     @return nothing
     """
 
@@ -56,14 +59,15 @@ def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
     # remove min max file from scenes folder
     scenes = [s for s in scenes if min_max_filename not in s]
 
-    begin, end = p_interval
+    begin_data, end_data = p_interval
+    begin_index, end_index = p_indices
+
     data_min_max_filename = os.path.join(path, p_metric + min_max_filename)
 
     # go ahead each scenes
     for id_scene, folder_scene in enumerate(scenes):
 
         if p_scene == folder_scene:
-            print(folder_scene)
             scene_path = os.path.join(path, folder_scene)
 
             config_file_path = os.path.join(scene_path, config_filename)
@@ -88,7 +92,7 @@ def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
                 zones_folder.append(current_zone)
 
             zones_images_data = []
-            images_indexes = []
+            images_indices = []
 
             zone_folder = zones_folder[p_zone]
 
@@ -113,10 +117,9 @@ def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
                 while len(start_index_image) > len(current_counter_index_str):
                     current_counter_index_str = "0" + current_counter_index_str
 
-
                 if current_counter_index % p_step == 0:
-                    if current_counter_index >= begin and current_counter_index <= end:
-                        images_indexes.append(current_counter_index_str)
+                    if current_counter_index >= begin_index and current_counter_index <= end_index:
+                        images_indices.append(current_counter_index_str)
 
                     if seuil_learned < int(current_counter_index) and not threshold_image_found:
 
@@ -125,10 +128,10 @@ def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
 
                 current_counter_index += step_counter
 
-            # all indexes of picture to plot
-            print(images_indexes)
+            # all indices of picture to plot
+            print(images_indices)
 
-            for index in images_indexes:
+            for index in images_indices:
 
                 img_path = os.path.join(scene_path, prefix_image_name + str(index) + ".png")
 
@@ -142,6 +145,9 @@ def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
                 # Here you can add the way you compute data
                 data = get_svd_data(p_metric, block)
 
+                if p_norm:
+                    data = data[begin_data:end_data]
+
                 ##################
                 # Data mode part #
                 ##################
@@ -153,28 +159,33 @@ def display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step):
                         min_val = float(f.readline())
                         max_val = float(f.readline())
 
-                    data = processing.normalize_arr_with_range(data, min_val, max_val)
+                    data = utils.normalize_arr_with_range(data, min_val, max_val)
 
                 if p_mode == 'svdn':
-                    data = processing.normalize_arr(data)
+                    data = utils.normalize_arr(data)
 
-                zones_images_data.append(data)
+                if not p_norm:
+                    zones_images_data.append(data[begin_data:end_data])
+                else:
+                    zones_images_data.append(data)
 
-            plt.title(p_scene + ' scene interval information ['+ str(begin) +', '+ str(end) +'], ' + p_metric + ' metric, ' + p_mode, fontsize=20)
+            plt.title(p_scene + ' scene interval information SVD['+ str(begin_data) +', '+ str(end_data) +'], from scenes indices [' + str(begin_index) + ', '+ str(end_index) + ']' + p_metric + ' metric, ' + p_mode + ', with step of ' + str(p_step) + ', svd norm ' + str(p_norm), fontsize=20)
             plt.ylabel('Image samples or time (minutes) generation', fontsize=14)
             plt.xlabel('Vector features', fontsize=16)
 
             for id, data in enumerate(zones_images_data):
 
-                p_label = p_scene + "_" + images_indexes[id]
+                p_label = p_scene + "_" + images_indices[id]
 
-                if images_indexes[id] == threshold_image_zone:
+                if images_indices[id] == threshold_image_zone:
                     plt.plot(data, label=p_label, lw=4, color='red')
                 else:
                     plt.plot(data, label=p_label)
 
             plt.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14)
-            plt.ylim(0, 0.1)
+
+            start_ylim, end_ylim = p_ylim
+            plt.ylim(start_ylim, end_ylim)
 
             plt.show()
 
@@ -183,31 +194,36 @@ def main():
 
     # by default p_step value is 10 to enable all photos
     p_step = 10
+    p_norm = 0
+    p_ylim = (0, 1)
 
     if len(sys.argv) <= 1:
         print('Run with default parameters...')
-        print('python display_svd_zone_scene.py --scene A --interval "0,200" --zone 3 --metric lab --mode svdne --step 50')
+        print('python display_svd_zone_scene.py --scene A --interval "0,200" --indices "0, 900" --zone 3 --metric lab --mode svdne --step 50 --norm 0 --ylim "0, 0.1"')
         sys.exit(2)
     try:
-        opts, args = getopt.getopt(sys.argv[1:], "hs:i:z:l:m:s", ["help=", "scene=", "interval=", "zone=", "metric=", "mode=", "step="])
+        opts, args = getopt.getopt(sys.argv[1:], "hs:i:i:z:l:m:s:n:y", ["help=", "scene=", "interval=", "indices=", "zone=", "metric=", "mode=", "step=", "norm=", "ylim="])
     except getopt.GetoptError:
         # print help information and exit:
-        print('python display_svd_zone_scene.py --scene A --interval "0,200" --zone 3 --metric lab --mode svdne --step 50')
+        print('python display_svd_zone_scene.py --scene A --interval "0,200" --indices "0, 900" --zone 3 --metric lab --mode svdne --step 50 --norm 0 --ylim "0, 0.1"')
         sys.exit(2)
     for o, a in opts:
         if o == "-h":
-            print('python display_svd_zone_scene.py --scene A --interval "0,200" --zone 3 --metric lab --mode svdne --step 50')
+            print('python display_svd_zone_scene.py --scene A --interval "0,200" --indices "0, 900" --zone 3 --metric lab --mode svdne --step 50 --norm 0 --ylim "0, 0.1"')
             sys.exit()
         elif o in ("-s", "--scene"):
             p_scene = a
 
-            if p_scene not in scenes_indexes:
+            if p_scene not in scenes_indices:
                 assert False, "Invalid scene choice"
             else:
-                p_scene = scenes_list[scenes_indexes.index(p_scene)]
+                p_scene = scenes_list[scenes_indices.index(p_scene)]
         elif o in ("-i", "--interval"):
             p_interval = list(map(int, a.split(',')))
 
+        elif o in ("-i", "--indices"):
+            p_indices = list(map(int, a.split(',')))
+
         elif o in ("-z", "--zone"):
             p_zone = int(a)
 
@@ -226,10 +242,16 @@ def main():
         elif o in ("-s", "--step"):
             p_step = int(a)
 
+        elif o in ("-n", "--norm"):
+            p_norm = int(a)
+
+        elif o in ("-y", "--ylim"):
+            p_ylim = list(map(float, a.split(',')))
+
         else:
             assert False, "unhandled option"
 
-    display_svd_values(p_scene, p_interval, p_zone, p_metric, p_mode, p_step)
+    display_svd_values(p_scene, p_interval, p_indices, p_zone, p_metric, p_mode, p_step, p_norm, p_ylim)
 
 if __name__== "__main__":
     main()

+ 3 - 4
generate_all_data.py

@@ -15,8 +15,7 @@ import json
 
 from modules.utils.data import get_svd_data
 from PIL import Image
-from ipfml import processing
-from ipfml import metrics
+from ipfml import processing, metrics, utils
 from skimage import color
 
 from modules.utils import config as cfg
@@ -131,10 +130,10 @@ def generate_data_svd(data_type, mode):
                         min_val = float(f.readline())
                         max_val = float(f.readline())
 
-                    data = processing.normalize_arr_with_range(data, min_val, max_val)
+                    data = utils.normalize_arr_with_range(data, min_val, max_val)
 
                 if mode == 'svdn':
-                    data = processing.normalize_arr(data)
+                    data = utils.normalize_arr(data)
 
                 # save min and max found from dataset in order to normalize data using whole data known
                 if mode == 'svd':

+ 2 - 2
generate_data_model.py

@@ -14,7 +14,7 @@ import time
 import json
 
 from PIL import Image
-from ipfml import processing, metrics
+from ipfml import processing, metrics, utils
 
 from modules.utils import config as cfg
 
@@ -53,7 +53,7 @@ def construct_new_line(path_seuil, interval, line, norm, sep, index):
 
     # TODO : check if it's always necessary to do that (loss of information for svd)
     if norm:
-        metrics = processing.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
+        metrics = utils.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
 
     with open(path_seuil, "r") as seuil_file:
         seuil_learned = int(seuil_file.readline().strip())

+ 26 - 10
generate_data_model_random.py

@@ -14,7 +14,7 @@ import time
 import json
 
 from PIL import Image
-from ipfml import processing, metrics
+from ipfml import processing, metrics, utils
 
 from modules.utils import config as cfg
 from modules.utils import data as dt
@@ -28,7 +28,7 @@ min_max_filename        = cfg.min_max_filename_extension
 all_scenes_list         = cfg.scenes_names
 all_scenes_indices      = cfg.scenes_indices
 
-choices                 = cfg.normalization_choices
+normalization_choices   = cfg.normalization_choices
 path                    = cfg.dataset_path
 zones                   = cfg.zones_indices
 seuil_expe_filename     = cfg.seuil_expe_filename
@@ -57,9 +57,9 @@ def construct_new_line(path_seuil, interval, line, choice, norm):
     if norm:
 
         if choice == 'svdne':
-            metrics = processing.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
+            metrics = utils.normalize_arr_with_range(metrics, min_value_interval, max_value_interval)
         if choice == 'svdn':
-            metrics = processing.normalize_arr(metrics)
+            metrics = utils.normalize_arr(metrics)
 
     with open(path_seuil, "r") as seuil_file:
         seuil_learned = int(seuil_file.readline().strip())
@@ -76,7 +76,7 @@ def construct_new_line(path_seuil, interval, line, choice, norm):
 
     return line
 
-def get_min_max_value_interval(_scenes_list, _filename, _interval, _choice, _metric):
+def get_min_max_value_interval(_scenes_list, _filename, _interval, _choice, _metric, _custom):
 
     global min_value_interval, max_value_interval
 
@@ -106,7 +106,13 @@ def get_min_max_value_interval(_scenes_list, _filename, _interval, _choice, _met
             for id_zone, zone_folder in enumerate(zones_folder):
 
                 zone_path = os.path.join(scene_path, zone_folder)
-                data_filename = _metric + "_" + _choice + generic_output_file_svd
+
+                # if custom normalization choices then we use svd values not already normalized
+                if _custom:
+                    data_filename = _metric + "_svd"+ generic_output_file_svd
+                else:
+                    data_filename = _metric + "_" + _choice + generic_output_file_svd
+
                 data_file_path = os.path.join(zone_path, data_filename)
 
                 # getting number of line and read randomly lines
@@ -136,7 +142,7 @@ def get_min_max_value_interval(_scenes_list, _filename, _interval, _choice, _met
                     counter += 1
 
 
-def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _scenes, _nb_zones = 4, _percent = 1, _random=0, _step=1, _norm = False):
+def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _scenes, _nb_zones = 4, _percent = 1, _random=0, _step=1, _custom = False):
 
     output_train_filename = _filename + ".train"
     output_test_filename = _filename + ".test"
@@ -178,7 +184,13 @@ def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _s
 
             for id_zone, zone_folder in enumerate(zones_folder):
                 zone_path = os.path.join(scene_path, zone_folder)
-                data_filename = _metric + "_" + _choice + generic_output_file_svd
+
+                # if custom normalization choices then we use svd values not already normalized
+                if _custom:
+                    data_filename = _metric + "_svd"+ generic_output_file_svd
+                else:
+                    data_filename = _metric + "_" + _choice + generic_output_file_svd
+
                 data_file_path = os.path.join(zone_path, data_filename)
 
                 # getting number of line and read randomly lines
@@ -201,7 +213,7 @@ def generate_data_model(_scenes_list, _filename, _interval, _choice, _metric, _s
                     image_index = int(data.split(';')[0])
 
                     if image_index % _step == 0:
-                        line = construct_new_line(path_seuil, _interval, data, _choice, _norm)
+                        line = construct_new_line(path_seuil, _interval, data, _choice, _custom)
 
                         if id_zone < _nb_zones and folder_scene in _scenes and percent <= _percent:
                             train_file_data.append(line)
@@ -251,6 +263,10 @@ def main():
             p_interval = list(map(int, a.split(',')))
         elif o in ("-k", "--kind"):
             p_kind = a
+
+            if p_kind not in normalization_choices:
+                assert False, "Invalid normalization choice, %s" % normalization_choices
+
         elif o in ("-m", "--metric"):
             p_metric = a
         elif o in ("-s", "--scenes"):
@@ -288,7 +304,7 @@ def main():
 
     # find min max value if necessary to renormalize data
     if p_custom:
-        get_min_max_value_interval(scenes_list, p_filename, p_interval, p_kind, p_metric)
+        get_min_max_value_interval(scenes_list, p_filename, p_interval, p_kind, p_metric, p_custom)
 
         # write new file to save
         if not os.path.exists(custom_min_max_folder):

+ 26 - 22
predict_noisy_image_svd.py

@@ -2,7 +2,7 @@ from sklearn.externals import joblib
 
 import numpy as np
 
-from ipfml import processing
+from ipfml import processing, utils
 from PIL import Image
 
 import sys, os, getopt
@@ -68,34 +68,34 @@ def main():
     # get interval values
     begin, end = p_interval
 
-    # check mode to normalize data
-    if p_mode == 'svdne':
+    # check if custom min max file is used
+    if p_custom:
 
-        # set min_max_filename if custom use
-        min_max_file_path = path + '/' + p_metric + min_max_ext
+        test_data = data[begin:end]
 
-        # need to read min_max_file
-        file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
-        with open(file_path, 'r') as f:
-            min_val = float(f.readline().replace('\n', ''))
-            max_val = float(f.readline().replace('\n', ''))
+        if p_mode == 'svdne':
 
-        l_values = processing.normalize_arr_with_range(data, min_val, max_val)
+            # set min_max_filename if custom use
+            min_max_file_path = custom_min_max_folder + '/' +  p_custom
 
-    elif p_mode == 'svdn':
-        l_values = processing.normalize_arr(data)
-    else:
-        l_values = data
+            # need to read min_max_file
+            file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
+            with open(file_path, 'r') as f:
+                min_val = float(f.readline().replace('\n', ''))
+                max_val = float(f.readline().replace('\n', ''))
 
-    test_data = l_values[begin:end]
+            test_data = utils.normalize_arr_with_range(test_data, min_val, max_val)
 
-    # check if custom min max file is used
-    if p_custom:
+        if p_mode == 'svdn':
+            test_data = utils.normalize_arr(test_data)
+
+    else:
 
+        # check mode to normalize data
         if p_mode == 'svdne':
 
             # set min_max_filename if custom use
-            min_max_file_path = custom_min_max_folder + '/' +  p_custom
+            min_max_file_path = path + '/' + p_metric + min_max_ext
 
             # need to read min_max_file
             file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
@@ -103,10 +103,14 @@ def main():
                 min_val = float(f.readline().replace('\n', ''))
                 max_val = float(f.readline().replace('\n', ''))
 
-            test_data = processing.normalize_arr_with_range(test_data, min_val, max_val)
+            l_values = utils.normalize_arr_with_range(data, min_val, max_val)
 
-        if p_mode == 'svdn':
-            test_data = processing.normalize_arr(test_data)
+        elif p_mode == 'svdn':
+            l_values = utils.normalize_arr(data)
+        else:
+            l_values = data
+
+        test_data = l_values[begin:end]
 
 
     # get prediction of model

+ 1 - 1
predict_seuil_expe.py

@@ -2,7 +2,7 @@ from sklearn.externals import joblib
 
 import numpy as np
 
-from ipfml import processing
+from ipfml import processing, utils
 from PIL import Image
 
 import sys, os, getopt