|
@@ -0,0 +1,325 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+"""
|
|
|
+Created on Fri Sep 14 21:02:42 2018
|
|
|
+
|
|
|
+@author: jbuisine
|
|
|
+"""
|
|
|
+
|
|
|
+from __future__ import print_function
|
|
|
+import sys, os, getopt
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import random
|
|
|
+import time
|
|
|
+import json
|
|
|
+
|
|
|
+from PIL import Image
|
|
|
+from ipfml import processing, metrics, utils
|
|
|
+import ipfml.iqa.fr as fr_iqa
|
|
|
+
|
|
|
+from skimage import color
|
|
|
+
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from modules.utils.data import get_svd_data
|
|
|
+
|
|
|
+from modules.utils import config as cfg
|
|
|
+
|
|
|
+# getting configuration information
|
|
|
+config_filename = cfg.config_filename
|
|
|
+zone_folder = cfg.zone_folder
|
|
|
+min_max_filename = cfg.min_max_filename_extension
|
|
|
+
|
|
|
+# define all scenes values
|
|
|
+scenes_list = cfg.scenes_names
|
|
|
+scenes_indices = cfg.scenes_indices
|
|
|
+choices = cfg.normalization_choices
|
|
|
+path = cfg.dataset_path
|
|
|
+zones = cfg.zones_indices
|
|
|
+seuil_expe_filename = cfg.seuil_expe_filename
|
|
|
+
|
|
|
+metric_choices = cfg.metric_choices_labels
|
|
|
+
|
|
|
+max_nb_bits = 8
|
|
|
+
|
|
|
+error_data_choices = ['mae', 'mse', 'ssim', 'psnr']
|
|
|
+
|
|
|
+
|
|
|
+def get_error_distance(p_error, y_true, y_test):
|
|
|
+
|
|
|
+ noise_method = None
|
|
|
+ function_name = p_error
|
|
|
+
|
|
|
+ try:
|
|
|
+ error_method = getattr(fr_iqa, function_name)
|
|
|
+ except AttributeError:
|
|
|
+ raise NotImplementedError("Error `{}` not implement `{}`".format(fr_iqa.__name__, function_name))
|
|
|
+
|
|
|
+ return error_method(y_true, y_test)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step, p_norm, p_error, p_ylim):
|
|
|
+ """
|
|
|
+ @brief Method which gives information about svd curves from zone of picture
|
|
|
+ @param p_scene, scene expected to show svd values
|
|
|
+ @param p_interval, interval [begin, end] of svd data to display
|
|
|
+ @param p_interval, interval [begin, end] of samples or minutes from render generation engine
|
|
|
+ @param p_metric, metric computed to show
|
|
|
+ @param p_mode, normalization's mode
|
|
|
+ @param p_norm, normalization or not of selected svd data
|
|
|
+ @param p_error, error metric used to display
|
|
|
+ @param p_ylim, ylim choice to better display of data
|
|
|
+ @return nothing
|
|
|
+ """
|
|
|
+
|
|
|
+ max_value_svd = 0
|
|
|
+ min_value_svd = sys.maxsize
|
|
|
+
|
|
|
+ image_indices = []
|
|
|
+
|
|
|
+ scenes = os.listdir(path)
|
|
|
+ # remove min max file from scenes folder
|
|
|
+ scenes = [s for s in scenes if min_max_filename not in s]
|
|
|
+
|
|
|
+ begin_data, end_data = p_interval
|
|
|
+ begin_index, end_index = p_indices
|
|
|
+
|
|
|
+ data_min_max_filename = os.path.join(path, p_metric + min_max_filename)
|
|
|
+
|
|
|
+ # go ahead each scenes
|
|
|
+ for id_scene, folder_scene in enumerate(scenes):
|
|
|
+
|
|
|
+ if p_scene == folder_scene:
|
|
|
+ scene_path = os.path.join(path, folder_scene)
|
|
|
+
|
|
|
+ config_file_path = os.path.join(scene_path, config_filename)
|
|
|
+
|
|
|
+ with open(config_file_path, "r") as config_file:
|
|
|
+ last_image_name = config_file.readline().strip()
|
|
|
+ prefix_image_name = config_file.readline().strip()
|
|
|
+ start_index_image = config_file.readline().strip()
|
|
|
+ end_index_image = config_file.readline().strip()
|
|
|
+ step_counter = int(config_file.readline().strip())
|
|
|
+
|
|
|
+ # construct each zones folder name
|
|
|
+ zones_folder = []
|
|
|
+
|
|
|
+ # get zones list info
|
|
|
+ for index in zones:
|
|
|
+ index_str = str(index)
|
|
|
+ if len(index_str) < 2:
|
|
|
+ index_str = "0" + index_str
|
|
|
+
|
|
|
+ current_zone = "zone"+index_str
|
|
|
+ zones_folder.append(current_zone)
|
|
|
+
|
|
|
+ images_data = []
|
|
|
+ images_indices = []
|
|
|
+
|
|
|
+ threshold_learned_zones = []
|
|
|
+
|
|
|
+ for id, zone_folder in enumerate(zones_folder):
|
|
|
+
|
|
|
+ # get threshold information
|
|
|
+
|
|
|
+ zone_path = os.path.join(scene_path, zone_folder)
|
|
|
+ path_seuil = os.path.join(zone_path, seuil_expe_filename)
|
|
|
+
|
|
|
+ # open treshold path and get this information
|
|
|
+ with open(path_seuil, "r") as seuil_file:
|
|
|
+ threshold_learned = int(seuil_file.readline().strip())
|
|
|
+ threshold_learned_zones.append(threshold_learned)
|
|
|
+
|
|
|
+ current_counter_index = int(start_index_image)
|
|
|
+ end_counter_index = int(end_index_image)
|
|
|
+
|
|
|
+ threshold_mean = np.mean(np.asarray(threshold_learned_zones))
|
|
|
+ threshold_image_found = False
|
|
|
+
|
|
|
+ file_path = os.path.join(scene_path, prefix_image_name + "{}.png")
|
|
|
+
|
|
|
+ svd_data = []
|
|
|
+
|
|
|
+ while(current_counter_index <= end_counter_index):
|
|
|
+
|
|
|
+ current_counter_index_str = str(current_counter_index)
|
|
|
+
|
|
|
+ while len(start_index_image) > len(current_counter_index_str):
|
|
|
+ current_counter_index_str = "0" + current_counter_index_str
|
|
|
+
|
|
|
+ if current_counter_index % p_step == 0:
|
|
|
+ if current_counter_index >= begin_index and current_counter_index <= end_index:
|
|
|
+ images_indices.append(current_counter_index_str)
|
|
|
+
|
|
|
+ if threshold_mean < int(current_counter_index) and not threshold_image_found:
|
|
|
+
|
|
|
+ threshold_image_found = True
|
|
|
+ threshold_image_zone = current_counter_index_str
|
|
|
+
|
|
|
+ image_path = file_path.format(str(current_counter_index_str))
|
|
|
+ img = Image.open(image_path)
|
|
|
+
|
|
|
+ svd_values = get_svd_data(p_metric, img)
|
|
|
+
|
|
|
+ if p_norm:
|
|
|
+ svd_values = svd_values[begin:end]
|
|
|
+
|
|
|
+ # update min max values
|
|
|
+ min_value = svd_values.min()
|
|
|
+ max_value = svd_values.max()
|
|
|
+
|
|
|
+ if min_value < min_value_svd:
|
|
|
+ min_value_svd = min_value
|
|
|
+
|
|
|
+ if max_value > min_value_svd:
|
|
|
+ max_value_svd = max_value
|
|
|
+
|
|
|
+ # keep in memory used data
|
|
|
+ if current_counter_index % p_step == 0:
|
|
|
+ if current_counter_index >= begin_index and current_counter_index <= end_index:
|
|
|
+ images_indices.append(current_counter_index_str)
|
|
|
+ svd_data.append(svd_values)
|
|
|
+
|
|
|
+ if threshold_mean < int(current_counter_index) and not threshold_image_found:
|
|
|
+
|
|
|
+ threshold_image_found = True
|
|
|
+ threshold_image_zone = current_counter_index_str
|
|
|
+
|
|
|
+ current_counter_index += step_counter
|
|
|
+ print('%.2f%%' % (current_counter_index / end_counter_index * 100))
|
|
|
+ sys.stdout.write("\033[F")
|
|
|
+
|
|
|
+
|
|
|
+ # all indices of picture to plot
|
|
|
+ print(images_indices)
|
|
|
+
|
|
|
+ previous_data = []
|
|
|
+ error_data = [0.]
|
|
|
+
|
|
|
+ for id, data in enumerate(svd_data):
|
|
|
+
|
|
|
+ current_data = data
|
|
|
+
|
|
|
+ if p_mode == 'svdn':
|
|
|
+ current_data = utils.normalize_arr(current_data)
|
|
|
+
|
|
|
+ if p_mode == 'svdne':
|
|
|
+ current_data = utils.normalize_arr_with_range(current_data, min_value_svd, max_value_svd)
|
|
|
+
|
|
|
+ images_data.append(current_data)
|
|
|
+
|
|
|
+ # use of whole image data for computation of ssim or psnr
|
|
|
+ if p_error == 'ssim' or p_error == 'psnr':
|
|
|
+ image_path = file_path.format(str(current_id))
|
|
|
+ current_data = np.asarray(Image.open(image_path))
|
|
|
+
|
|
|
+ if len(previous_data) > 0:
|
|
|
+
|
|
|
+ current_error = get_error_distance(p_error, previous_data, current_data)
|
|
|
+ error_data.append(current_error)
|
|
|
+
|
|
|
+ if len(previous_data) == 0:
|
|
|
+ previous_data = current_data
|
|
|
+
|
|
|
+ # display all data using matplotlib (configure plt)
|
|
|
+ gridsize = (3, 2)
|
|
|
+
|
|
|
+ # fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(30, 22))
|
|
|
+ fig = plt.figure(figsize=(30, 22))
|
|
|
+ ax1 = plt.subplot2grid(gridsize, (0, 0), colspan=2, rowspan=2)
|
|
|
+ ax2 = plt.subplot2grid(gridsize, (2, 0), colspan=2)
|
|
|
+
|
|
|
+
|
|
|
+ ax1.set_title(p_scene + ' scene interval information SVD['+ str(begin_data) +', '+ str(end_data) +'], from scenes indices [' + str(begin_index) + ', '+ str(end_index) + ']' + p_metric + ' metric, ' + p_mode + ', with step of ' + str(p_step) + ', svd norm ' + str(p_norm), fontsize=20)
|
|
|
+ ax1.set_ylabel('Image samples or time (minutes) generation', fontsize=14)
|
|
|
+ ax1.set_xlabel('Vector features', fontsize=16)
|
|
|
+
|
|
|
+ for id, data in enumerate(images_data):
|
|
|
+
|
|
|
+ p_label = p_scene + '_' + str(images_indices[id]) + " | " + p_error + ": " + str(error_data[id])
|
|
|
+
|
|
|
+ if images_indices[id] == threshold_image_zone:
|
|
|
+ ax1.plot(data, label=p_label, lw=4, color='red')
|
|
|
+ else:
|
|
|
+ ax1.plot(data, label=p_label)
|
|
|
+
|
|
|
+ ax1.legend(bbox_to_anchor=(0.8, 1), loc=2, borderaxespad=0.2, fontsize=14)
|
|
|
+
|
|
|
+ start_ylim, end_ylim = p_ylim
|
|
|
+ ax1.set_ylim(start_ylim, end_ylim)
|
|
|
+
|
|
|
+ ax2.set_title(p_error + " information for whole step images")
|
|
|
+ ax2.set_ylabel(p_error + ' error')
|
|
|
+ ax2.set_xlabel('Number of samples per pixels or times')
|
|
|
+ ax2.set_xticks(range(len(images_indices)))
|
|
|
+ ax2.set_xticklabels(list(map(int, images_indices)))
|
|
|
+ ax2.plot(error_data)
|
|
|
+
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+def main():
|
|
|
+
|
|
|
+
|
|
|
+ # by default p_step value is 10 to enable all photos
|
|
|
+ p_step = 10
|
|
|
+ p_ylim = (0, 1)
|
|
|
+
|
|
|
+ if len(sys.argv) <= 1:
|
|
|
+ print('Run with default parameters...')
|
|
|
+ print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
|
|
|
+ sys.exit(2)
|
|
|
+ try:
|
|
|
+ opts, args = getopt.getopt(sys.argv[1:], "hs:i:i:z:l:m:s:n:e:y", ["help=", "scene=", "interval=", "indices=", "metric=", "mode=", "step=", "norm=", "error=", "ylim="])
|
|
|
+ except getopt.GetoptError:
|
|
|
+ # print help information and exit:
|
|
|
+ print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
|
|
|
+ sys.exit(2)
|
|
|
+ for o, a in opts:
|
|
|
+ if o == "-h":
|
|
|
+ print('python display_svd_data_scene.py --scene A --interval "0,800" --indices "0, 900" --metric lab --mode svdne --step 50 --norm 0 --error mae --ylim "0, 0.1"')
|
|
|
+ sys.exit()
|
|
|
+ elif o in ("-s", "--scene"):
|
|
|
+ p_scene = a
|
|
|
+
|
|
|
+ if p_scene not in scenes_indices:
|
|
|
+ assert False, "Invalid scene choice"
|
|
|
+ else:
|
|
|
+ p_scene = scenes_list[scenes_indices.index(p_scene)]
|
|
|
+ elif o in ("-i", "--interval"):
|
|
|
+ p_interval = list(map(int, a.split(',')))
|
|
|
+
|
|
|
+ elif o in ("-i", "--indices"):
|
|
|
+ p_indices = list(map(int, a.split(',')))
|
|
|
+
|
|
|
+ elif o in ("-m", "--metric"):
|
|
|
+ p_metric = a
|
|
|
+
|
|
|
+ if p_metric not in metric_choices:
|
|
|
+ assert False, "Invalid metric choice"
|
|
|
+
|
|
|
+ elif o in ("-m", "--mode"):
|
|
|
+ p_mode = a
|
|
|
+
|
|
|
+ if p_mode not in choices:
|
|
|
+ assert False, "Invalid normalization choice, expected ['svd', 'svdn', 'svdne']"
|
|
|
+
|
|
|
+ elif o in ("-s", "--step"):
|
|
|
+ p_step = int(a)
|
|
|
+
|
|
|
+ elif o in ("-n", "--norm"):
|
|
|
+ p_norm = int(a)
|
|
|
+
|
|
|
+ elif o in ("-e", "--error"):
|
|
|
+ p_error = a
|
|
|
+
|
|
|
+ elif o in ("-y", "--ylim"):
|
|
|
+ p_ylim = list(map(float, a.split(',')))
|
|
|
+
|
|
|
+ else:
|
|
|
+ assert False, "unhandled option"
|
|
|
+
|
|
|
+ display_svd_values(p_scene, p_interval, p_indices, p_metric, p_mode, p_step, p_norm, p_error, p_ylim)
|
|
|
+
|
|
|
+if __name__== "__main__":
|
|
|
+ main()
|