123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- from sklearn.externals import joblib
- import numpy as np
- from ipfml import processing, utils
- from PIL import Image
- import sys, os, argparse, json
- from keras.models import model_from_json
- from modules.utils import config as cfg
- from modules.utils import data as dt
- path = cfg.dataset_path
- min_max_ext = cfg.min_max_filename_extension
- metric_choices = cfg.metric_choices_labels
- normalization_choices = cfg.normalization_choices
- custom_min_max_folder = cfg.min_max_custom_folder
- def main():
- # getting all params
- parser = argparse.ArgumentParser(description="Script which detects if an image is noisy or not using specific model")
- parser.add_argument('--image', type=str, help='Image path')
- parser.add_argument('--interval', type=str, help='Interval value to keep from svd', default='"0, 200"')
- parser.add_argument('--model', type=str, help='.joblib or .json file (sklearn or keras model)')
- parser.add_argument('--mode', type=str, help='Kind of normalization level wished', choices=normalization_choices)
- parser.add_argument('--metric', type=str, help='Metric data choice', choices=metric_choices)
- parser.add_argument('--custom', type=str, help='Name of custom min max file if use of renormalization of data', default=False)
- args = parser.parse_args()
- p_img_file = args.image
- p_model_file = args.model
- p_interval = list(map(int, args.interval.split(',')))
- p_mode = args.mode
- p_metric = args.metric
- p_custom = args.custom
- if '.joblib' in p_model_file:
- kind_model = 'sklearn'
- if '.json' in p_model_file:
- kind_model = 'keras'
- if 'corr' in p_model_file:
- corr_model = True
- indices_corr_path = os.path.join(cfg.correlation_indices_folder, p_model_file.split('/')[1].replace('.json', '').replace('.joblib', '') + '.csv')
- with open(indices_corr_path, 'r') as f:
- data_corr_indices = [int(x) for x in f.readline().split(';') if x != '']
- else:
- corr_model = False
- if kind_model == 'sklearn':
- # load of model file
- model = joblib.load(p_model_file)
- if kind_model == 'keras':
- with open(p_model_file, 'r') as f:
- json_model = json.load(f)
- model = model_from_json(json_model)
- model.load_weights(p_model_file.replace('.json', '.h5'))
- model.compile(loss='binary_crossentropy',
- optimizer='adam',
- metrics=['accuracy'])
- # load image
- img = Image.open(p_img_file)
- data = dt.get_svd_data(p_metric, img)
- # get interval values
- begin, end = p_interval
- # check if custom min max file is used
- if p_custom:
- if corr_model:
- test_data = data[data_corr_indices]
- else:
- test_data = data[begin:end]
- if p_mode == 'svdne':
- # set min_max_filename if custom use
- min_max_file_path = custom_min_max_folder + '/' + p_custom
- # need to read min_max_file
- file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
- with open(file_path, 'r') as f:
- min_val = float(f.readline().replace('\n', ''))
- max_val = float(f.readline().replace('\n', ''))
- test_data = utils.normalize_arr_with_range(test_data, min_val, max_val)
- if p_mode == 'svdn':
- test_data = utils.normalize_arr(test_data)
- else:
- # check mode to normalize data
- if p_mode == 'svdne':
- # set min_max_filename if custom use
- min_max_file_path = path + '/' + p_metric + min_max_ext
- # need to read min_max_file
- file_path = os.path.join(os.path.dirname(__file__), min_max_file_path)
- with open(file_path, 'r') as f:
- min_val = float(f.readline().replace('\n', ''))
- max_val = float(f.readline().replace('\n', ''))
- l_values = utils.normalize_arr_with_range(data, min_val, max_val)
- elif p_mode == 'svdn':
- l_values = utils.normalize_arr(data)
- else:
- l_values = data
- if corr_model:
- test_data = data[data_corr_indices]
- else:
- test_data = data[begin:end]
- # get prediction of model
- if kind_model == 'sklearn':
- prediction = model.predict([test_data])[0]
- if kind_model == 'keras':
- test_data = np.asarray(test_data).reshape(1, len(test_data), 1)
- prediction = model.predict_classes([test_data])[0][0]
- # output expected from others scripts
- print(prediction)
- if __name__== "__main__":
- main()
|