Optimisation modules built for optimization problem during thesis
Jérôme BUISINE 6313a6a393 enable n objectives for MOEAD | il y a 4 ans | |
---|---|---|
.github | il y a 4 ans | |
docs | il y a 4 ans | |
macop | il y a 4 ans | |
.gitignore | il y a 4 ans | |
CONTRIBUTING.md | il y a 4 ans | |
LICENSE | il y a 5 ans | |
README.md | il y a 4 ans | |
__init__.py | il y a 5 ans | |
build.sh | il y a 4 ans | |
knapsackExample.py | il y a 4 ans | |
knapsackMultiExample.py | il y a 4 ans | |
logo_macop.png | il y a 4 ans | |
requirements.txt | il y a 4 ans | |
setup.py | il y a 4 ans |
macop
is an optimization Python package which not implement the whole available algorithms in the literature but let you the possibility to quickly develop and test your own algorithm and strategies. The main objective of this package is to be the most flexible as possible and hence, to offer a maximum of implementation possibilities.
policies
folder to manage the way of update and use solution.Callback
class is available for making callback instructions every number of evaluations.
Note: you can pass a custom validator
function to the algorithm in order to check is solution is always correct for your needs after an update.
You can see an example of use in the knapsackExample.py
python file.
Fully documentation of package with examples is also available.
git submodule add https://github.com/jbuisine/macop.git