12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # main imports
- import logging
- import os
- import random
- # module imports
- from macop.solutions.BinarySolution import BinarySolution
- from macop.evaluators.EvaluatorExample import evaluatorExample
- from macop.operators.mutators.SimpleMutation import SimpleMutation
- from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
- from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
- from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
- from macop.operators.policies.RandomPolicy import RandomPolicy
- from macop.operators.policies.UCBPolicy import UCBPolicy
- from macop.algorithms.multi.MOEAD import MOEAD
- from macop.callbacks.MultiCheckpoint import MultiCheckpoint
- from macop.callbacks.ParetoCheckpoint import ParetoCheckpoint
- if not os.path.exists('data'):
- os.makedirs('data')
- # logging configuration
- logging.basicConfig(format='%(asctime)s %(message)s', filename='data/exampleMOEAD.log', level=logging.DEBUG)
- random.seed(42)
- elements_score1 = [ random.randint(1, 100) for _ in range(500) ]
- elements_score2 = [ random.randint(1, 200) for _ in range(500) ]
- elements_weight = [ random.randint(90, 100) for _ in range(500) ]
- def knapsackWeight(_solution):
- weight_sum = 0
- for index, elem in enumerate(_solution.data):
- weight_sum += elements_weight[index] * elem
- return weight_sum
- # default validator
- def validator(_solution):
- if knapsackWeight(_solution) <= 15000:
- return True
- else:
- False
- # define init random solution
- def init():
- return BinarySolution([], 200).random(validator)
- def evaluator1(_solution):
- fitness = 0
- for index, elem in enumerate(_solution.data):
- fitness += (elements_score1[index] * elem)
- return fitness
- def evaluator2(_solution):
- fitness = 0
- for index, elem in enumerate(_solution.data):
- fitness += (elements_score2[index] * elem)
- return fitness
- mo_checkpoint_path = "data/checkpointsMOEAD.csv"
- pf_checkpoint_path = "data/pfMOEAD.csv"
- def main():
- operators = [SimpleBinaryMutation(), SimpleMutation(), SimpleCrossover(), RandomSplitCrossover()]
- policy = RandomPolicy(operators)
- # pass list of evaluators
- algo = MOEAD(20, 5, init, [evaluator1, evaluator2, evaluator2, evaluator2], operators, policy, validator, _maximise=True)
- print(algo.weights)
- algo.addCallback(MultiCheckpoint(_every=5, _filepath=mo_checkpoint_path))
- algo.addCallback(ParetoCheckpoint(_every=5, _filepath=pf_checkpoint_path))
- paretoFront = algo.run(10000)
- print("Pareto front is composed of", len(paretoFront), "solutions")
- if __name__ == "__main__":
- main()
|