123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- """Pareto front Checkpoint class implementation
- """
- # main imports
- import os
- import logging
- import numpy as np
- import pkgutil
- # module imports
- from .Callback import Callback
- from ..utils.color import macop_text, macop_line
- # import all available solutions
- for loader, module_name, is_pkg in pkgutil.walk_packages(
- path=['macop/solutions'], prefix='macop.solutions.'):
- _module = loader.find_module(module_name).load_module(module_name)
- globals()[module_name] = _module
- class ParetoCheckpoint(Callback):
- """
- Pareto checkpoint is used for loading previous computations and start again after loading checkpoint
- Attributes:
- algo: {Algorithm} -- main algorithm instance reference
- every: {int} -- checkpoint frequency used (based on number of evaluations)
- filepath: {str} -- file path where checkpoints will be saved
- """
- def run(self):
- """
- Check if necessary to do backup based on `every` variable
- """
- # get current population
- pfPop = self.algo.pfPop
- currentEvaluation = self.algo.getGlobalEvaluation()
- # backup if necessary
- if currentEvaluation % self.every == 0:
- logging.info("Checkpoint is done into " + self.filepath)
- with open(self.filepath, 'w') as f:
-
- for solution in pfPop:
- solutionData = ""
- solutionSize = len(solution.data)
- for index, val in enumerate(solution.data):
- solutionData += str(val)
- if index < solutionSize - 1:
- solutionData += ' '
- line = ''
- for i in range(len(self.algo.evaluator)):
- line += str(solution.scores[i]) + ';'
- line += solutionData + ';\n'
-
- f.write(line)
- def load(self):
- """
- Load backup lines as population and set algorithm state (population and pareto front) at this backup
- """
- if os.path.exists(self.filepath):
- logging.info('Load best solution from last checkpoint')
- with open(self.filepath) as f:
-
- # reinit pf population
- self.algo.pfPop = []
- # retrieve class name from algo
- class_name = type(self.algo.population[0]).__name__
- # read data for each line
- for line in f.readlines():
- data = line.replace(';\n', '').split(';')
-
- nObjectives = len(self.algo.evaluator)
- scores = [ float(s) for s in data[0:nObjectives] ]
- # get best solution data information
- solutionData = list(map(int, data[-1].split(' ')))
- newSolution = getattr(globals()['macop.solutions.' + class_name], class_name)(solutionData, len(solutionData))
- newSolution.scores = scores
- self.algo.pfPop.append(newSolution)
- print(macop_text('Load of available pareto front backup from `{}`'.format(self.filepath)))
- else:
- print(macop_text('No pareto front found... Start running algorithm with new pareto front population.'))
- logging.info("No pareto front backup used...")
- print(macop_line())
|