12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- """Policy class implementation which is used for selecting operator using Upper Confidence Bound
- """
- # main imports
- import logging
- import random
- import math
- # module imports
- from .Policy import Policy
- class UCBPolicy(Policy):
- """UCB policy class which is used for applying UCB strategy when selecting and applying operator
- Attributes:
- operators: {[Operator]} -- list of selected operators for the algorithm
- C: {float} -- tradeoff between EvE parameter for UCB
- rewards: {[float]} -- list of summed rewards obtained for each operator
- occurences: {[int]} -- number of use (selected) of each operator
- """
- def __init__(self, _operators, _C=100.):
- self.operators = _operators
- self.rewards = [0. for o in self.operators]
- self.occurences = [0 for o in self.operators]
- self.C = _C
- def select(self):
- """Select randomly the next operator to use
- Returns:
- {Operator}: the selected operator
- """
- indices = [i for i, o in enumerate(self.occurences) if o == 0]
- # if operator have at least be used one time
- if len(indices) == 0:
- ucbValues = []
- nVisits = sum(self.occurences)
- for i in range(len(self.operators)):
- ucbValue = self.rewards[i] + self.C * math.sqrt(
- math.log(nVisits) / self.occurences[i])
- ucbValues.append(ucbValue)
- return self.operators[ucbValues.index(max(ucbValues))]
- else:
- return self.operators[random.choice(indices)]
- def apply(self, _solution):
- """
- Apply specific operator chosen to create new solution, computes its fitness and returns solution
-
- Args:
- _solution: {Solution} -- the solution to use for generating new solution
- Returns:
- {Solution} -- new generated solution
- """
- operator = self.select()
- logging.info("---- Applying %s on %s" %
- (type(operator).__name__, _solution))
- # apply operator on solution
- newSolution = operator.apply(_solution)
- # compute fitness of new solution
- newSolution.evaluate(self.algo.evaluator)
- # compute fitness improvment rate
- if self.algo.maximise:
- fir = (newSolution.fitness() - _solution.fitness()) / _solution.fitness()
- else:
- fir = (_solution.fitness() - newSolution.fitness()) / _solution.fitness()
- if fir > 0:
- operator_index = self.operators.index(operator)
- self.rewards[operator_index] += fir
- self.occurences[operator_index] += 1
- logging.info("---- Obtaining %s" % (_solution))
- return newSolution
|