123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- # main imports
- import logging
- # module imports
- from .Algorithm import Algorithm
- from.LocalSearch import LocalSearch
- class IteratedLocalSearch(Algorithm):
- def run(self, _evaluations, _ls_evaluations=100):
- # by default use of mother method to initialize variables
- super().run(_evaluations)
- # enable checkpoint for ILS
- if self.checkpoint is not None:
- self.resume()
- # passing global evaluation param from ILS
- ls = LocalSearch(self.initializer, self.evaluator, self.operators, self.policy, self.validator, self.maximise, _parent=self)
-
- # set same checkpoint if exists
- if self.checkpoint is not None:
- ls.setCheckpoint(self.checkpoint)
- # local search algorithm implementation
- while self.getGlobalEvaluation() < self.maxEvalutations:
-
- # create and search solution from local search
- newSolution = ls.run(_ls_evaluations)
- # if better solution than currently, replace it
- if self.isBetter(newSolution):
- self.bestSolution = newSolution
- # number of evaluatins increased from LocalSearch
- # increase number of evaluations and progress are then not necessary there
- #self.increaseEvaluation()
- #self.progress()
- self.information()
- logging.info("End of %s, best solution found %s" % (type(self).__name__, self.bestSolution))
- return self.bestSolution
|