Optimisation modules built for optimization problem during thesis
Jérôme BUISINE a47fb48592 remove evaluation inside policy but inside algorithm | il y a 3 ans | |
---|---|---|
.github | il y a 3 ans | |
docs | il y a 3 ans | |
examples | il y a 3 ans | |
macop | il y a 3 ans | |
.gitignore | il y a 4 ans | |
CONTRIBUTING.md | il y a 4 ans | |
LICENSE | il y a 5 ans | |
README.md | il y a 4 ans | |
__init__.py | il y a 5 ans | |
build.sh | il y a 3 ans | |
logo_macop.png | il y a 4 ans | |
paper.bib | il y a 4 ans | |
paper.md | il y a 4 ans | |
requirements.txt | il y a 4 ans | |
setup.py | il y a 3 ans |
macop
is an optimisation Python package which not implement the whole available algorithms in the literature but let you the possibility to quickly develop and test your own algorithm and strategies. The main objective of this package is to be the most flexible as possible and hence, to offer a maximum of implementation possibilities.
policies
folder to manage the way of update and use solution.Callback
class is available for making callback instructions every number of evaluations.
Note: you can pass a custom validator
function to the algorithm in order to check if a solution is always correct for your needs after an update.
Fully documentation of package with examples is available.
You can also see examples of use:
git submodule add https://github.com/jbuisine/macop.git