Optimisation modules built for optimization problem during thesis

Jérôme BUISINE aaca5c9aaa Add of some references and Summary il y a 4 ans
.github df8251b5ac new package name : macop; use of new policy for operators il y a 4 ans
docs 0ed780598c Current initialization of solution updates il y a 4 ans
examples 39dd88a8f3 Fix initialization of solution issue; Fix load of UCB checkpoint il y a 4 ans
macop 0ed780598c Current initialization of solution updates il y a 4 ans
.gitignore feb1e4263c enable solutions dynamic imports using python package il y a 4 ans
CONTRIBUTING.md df8251b5ac new package name : macop; use of new policy for operators il y a 4 ans
LICENSE 3589fb944b Initial commit il y a 5 ans
README.md feb1e4263c enable solutions dynamic imports using python package il y a 4 ans
__init__.py 0a1b108095 First version of OR framework il y a 5 ans
build.sh df8251b5ac new package name : macop; use of new policy for operators il y a 4 ans
logo_macop.png df8251b5ac new package name : macop; use of new policy for operators il y a 4 ans
paper.bib aaca5c9aaa Add of some references and Summary il y a 4 ans
paper.md aaca5c9aaa Add of some references and Summary il y a 4 ans
requirements.txt 4fbbbf39d3 documentation updates for algorithms il y a 4 ans
setup.py 0ed780598c Current initialization of solution updates il y a 4 ans

README.md

Minimalist And Customizable Optimization Package

Description

macop is an optimization Python package which not implement the whole available algorithms in the literature but let you the possibility to quickly develop and test your own algorithm and strategies. The main objective of this package is to be the most flexible as possible and hence, to offer a maximum of implementation possibilities.

Modules

  • algorithms: generic and implemented OR algorithms
  • evaluator: example of an evaluation function to use (you have to implement your own evaluation function)
  • solutions: solutions used to represent problem data
  • operators: mutators, crossovers update of solution. This folder also has policies folder to manage the way of update and use solution.
  • callbacks: callbacks folder where Callback class is available for making callback instructions every number of evaluations.

Note: you can pass a custom validator function to the algorithm in order to check is solution is always correct for your needs after an update.

How to use ?

Fully documentation of package with examples is available.

You can also see examples of use:

Add as dependency

git submodule add https://github.com/jbuisine/macop.git

License

The MIT License