IPFML
=====
Image Processing For Machine Learning package.
How to use ?
------------
To use, simply do::
>>> from PIL import Image
>>> import ipfml as iml
>>> img = Image.open('path/to/image.png')
>>> s = iml.metrics.get_SVD_s(img)
Modules
-------
This project contains modules.
- **img_processing** : *PIL image processing part*
- fig2data(fig): *Convert a Matplotlib figure to a 3D numpy array with RGB channels and return it*
- fig2img(fig): *Convert a Matplotlib figure to a PIL Image in RGB format and return it*
- **metrics** : *Metrics computation of PIL image*
- get_SVD(image): *Transforms PIL Image into SVD*
- get_SVD_s(image): *Transforms PIL Image into SVD and returns only 's' part*
- get_SVD_U(image): *Transforms PIL Image into SVD and returns only 'U' part*
- get_SVD_V(image): *Transforms PIL Image into SVD and returns only 'V' part*
- get_LAB(image): *Transforms PIL Image into LAB*
- get_LAB_L(image): *Transforms PIL Image into LAB and returns only 'L' part*
- get_LAB_A(image): *Transforms PIL Image into LAB and returns only 'A' part*
- get_LAB_B(image): *Transforms PIL Image into LAB and returns only 'B' part*
- get_XYZ(image): *Transforms PIL Image into XYZ*
- get_XYZ_X(image): *Transforms PIL Image into XYZ and returns only 'X' part*
- get_XYZ_Y(image): *Transforms PIL Image into XYZ and returns only 'Y' part*
- get_XYZ_Z(image): *Transforms PIL Image into XYZ and returns only 'Z' part*
- **ts_model_helper** : *contains helpful function to save or display model information and performance of tensorflow model*
- save(history, filename): *Function which saves data from neural network model*
- show(history, filename): *Function which shows data from neural network model*
All these modules will be enhanced during development of the project
How to contribute
-----------------
This git project uses git-flow_ implementation. You are free to contribute to it.
.. _git-flow : https://danielkummer.github.io/git-flow-cheatsheet/