Image Processing For Machine Learning python Package https://pypi.org/project/IPFML/

Jerome Buisine b50f0393af Merge branch 'release/v0.1.5' il y a 6 ans
images 420f833455 Add of metrics tests il y a 6 ans
ipfml 78a2e676a8 Bits computations metric and processing of image added il y a 6 ans
.gitignore 433801fdfb Initial commit il y a 6 ans
.python-version d338201ddc First functions added il y a 6 ans
LICENSE 433801fdfb Initial commit il y a 6 ans
MANIFEST.in 420f833455 Add of metrics tests il y a 6 ans
README.md 78a2e676a8 Bits computations metric and processing of image added il y a 6 ans
README.rst 78a2e676a8 Bits computations metric and processing of image added il y a 6 ans
example.py 139508ebd7 Update of image_processing divide_in_block function il y a 6 ans
setup.py 78a2e676a8 Bits computations metric and processing of image added il y a 6 ans

README.md

IPFML

Image Processing For Machine Learning package.

How to use ?

To use, simply do :

from PIL import Image
from ipfml import image_processing
img = Image.open('path/to/image.png')
s = image_processing.get_LAB_L_SVD_s(img)

Modules

This project contains modules.

  • image_processing : Image processing module

    • get_LAB_L_SVD_U(image): Returns U SVD from L of LAB Image information
    • get_LAB_L_SVD_s(image): Returns s (Singular values) SVD from L of LAB Image information
    • get_LAB_L_SVD_V(image): Returns V SVD from L of LAB Image information
    • divide_in_blocks(image, block_size): Divide image into equal size blocks
    • rgb_to_mscn(image): Convert RGB Image into Mean Subtracted Contrast Normalized (MSCN) using only gray level
    • rgb_to_grey_low_bits(image, bind=15): Convert RGB Image into grey image using only 4 low bits values by default
    • rgb_to_LAB_L_low_bits(image, bind=15): Convert RGB Image into LAB L channel image using only 4 low bits values by default
    • rgb_to_LAB_L_bits(image, interval): Convert RGB Image into LAB L channel image using specific interval of bits to keep (2, 5) such as example
    • normalize_arr(arr): Normalize array values
    • normalize_arr_with_range(arr, min, max): Normalize array values with specific min and max values
    • normalize_2D_arr(arr): Return 2D array normalize from its min and max values
  • metrics : Metrics computation of PIL or 2D numpy image

    • get_SVD(image): Transforms Image into SVD
    • get_SVD_U(image): Transforms Image into SVD and returns only 'U' part
    • get_SVD_s(image): Transforms Image into SVD and returns only 's' part
    • get_SVD_V(image): Transforms Image into SVD and returns only 'V' part
    • get_LAB(image): Transforms Image into LAB
    • get_LAB_L(image): Transforms Image into LAB and returns only 'L' part
    • get_LAB_A(image): Transforms Image into LAB and returns only 'A' part
    • get_LAB_B(image): Transforms Image into LAB and returns only 'B' part
    • get_XYZ(image): Transforms Image into XYZ
    • get_XYZ_X(image): Transforms Image into XYZ and returns only 'X' part
    • get_XYZ_Y(image): Transforms Image into XYZ and returns only 'Y' part
    • get_XYZ_Z(image): Transforms Image into XYZ and returns only 'Z' part
    • get_low_bits_img(image, bind=15): Returns Image or Numpy array with data information reduced using only low bits (by default

All these modules will be enhanced during development of the project

How to contribute

This git project uses git-flow implementation. You are free to contribute to it.