|
@@ -0,0 +1,304 @@
|
|
|
+#include <stdio.h>
|
|
|
+#include <string.h>
|
|
|
+#include <sstream>
|
|
|
+#include <iostream>
|
|
|
+#include <fstream>
|
|
|
+#include <vector>
|
|
|
+#include <tuple>
|
|
|
+#include <cmath>
|
|
|
+#include <numeric>
|
|
|
+#include <map>
|
|
|
+#include <algorithm>
|
|
|
+#include <filesystem>
|
|
|
+
|
|
|
+#include "rawls.h"
|
|
|
+
|
|
|
+struct Point {
|
|
|
+ unsigned x;
|
|
|
+ unsigned y;
|
|
|
+};
|
|
|
+
|
|
|
+struct Tile {
|
|
|
+ Point p1;
|
|
|
+ Point p2;
|
|
|
+};
|
|
|
+
|
|
|
+
|
|
|
+void writeProgress(float progress, bool moveUp = false){
|
|
|
+ int barWidth = 200;
|
|
|
+
|
|
|
+ if (moveUp){
|
|
|
+ // move up line
|
|
|
+ std::cout << "\e[A";
|
|
|
+ std::cout.flush();
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cout << "[";
|
|
|
+ int pos = barWidth * progress;
|
|
|
+ for (int i = 0; i < barWidth; ++i) {
|
|
|
+ if (i < pos) std::cout << "=";
|
|
|
+ else if (i == pos) std::cout << ">";
|
|
|
+ else std::cout << " ";
|
|
|
+ }
|
|
|
+ std::cout << "] " << int(progress * 100.0) << " %\r";
|
|
|
+ std::cout.flush();
|
|
|
+}
|
|
|
+
|
|
|
+float getEstimator(std::string estimator, std::vector<float> values) {
|
|
|
+
|
|
|
+ if (estimator == "median") {
|
|
|
+
|
|
|
+ std::sort(values.begin(), values.end());
|
|
|
+
|
|
|
+ unsigned size = values.size();
|
|
|
+
|
|
|
+ if (size % 2 == 0)
|
|
|
+ {
|
|
|
+ return (values[size / 2 - 1] + values[size / 2]) / 2;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return values[size / 2];
|
|
|
+ }
|
|
|
+ } else if (estimator == "mean") {
|
|
|
+
|
|
|
+ return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
|
|
|
+
|
|
|
+ } else if (estimator == "var") {
|
|
|
+ // Calculate the mean
|
|
|
+ const float mean = std::accumulate(values.begin(), values.end(), 0.0) / values.size();
|
|
|
+
|
|
|
+ // Now calculate the variance
|
|
|
+ auto variance_func = [&mean](float accumulator, const float& val) {
|
|
|
+ return accumulator + pow(val - mean, 2);
|
|
|
+ };
|
|
|
+
|
|
|
+ return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
|
|
|
+
|
|
|
+ } else if (estimator == "std") {
|
|
|
+
|
|
|
+ return sqrt(getEstimator("var", values));
|
|
|
+
|
|
|
+ } else if (estimator == "skewness") {
|
|
|
+
|
|
|
+ unsigned size = values.size();
|
|
|
+
|
|
|
+ float mean = getEstimator("mean", values);
|
|
|
+ float std = getEstimator("std", values);
|
|
|
+
|
|
|
+ // Now calculate the sum of pow 3
|
|
|
+ auto order3_func = [&mean, &std](float accumulator, const float& val) {
|
|
|
+ return accumulator + pow((val - mean) / std, 3);
|
|
|
+ };
|
|
|
+
|
|
|
+ float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
|
|
|
+
|
|
|
+ return order3 / size;
|
|
|
+
|
|
|
+ } else if (estimator == "kurtosis") {
|
|
|
+
|
|
|
+ unsigned size = values.size();
|
|
|
+
|
|
|
+ float mean = getEstimator("mean", values);
|
|
|
+ float std = getEstimator("std", values);
|
|
|
+
|
|
|
+ // Now calculate the sum of pow 4
|
|
|
+ auto order4_func = [&mean, &std](float accumulator, const float& val) {
|
|
|
+ return accumulator + pow((val - mean) / std, 4);
|
|
|
+ };
|
|
|
+
|
|
|
+ float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
|
|
|
+
|
|
|
+ return order4 / size;
|
|
|
+
|
|
|
+ } else if (estimator == "mode") {
|
|
|
+
|
|
|
+ std::vector<float> pvalues;
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < values.size(); i++){
|
|
|
+ pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ typedef std::map<float,unsigned int> CounterMap;
|
|
|
+ CounterMap counts;
|
|
|
+ for (int i = 0; i < pvalues.size(); ++i)
|
|
|
+ {
|
|
|
+ CounterMap::iterator it(counts.find(pvalues[i]));
|
|
|
+ if (it != counts.end()){
|
|
|
+ it->second++;
|
|
|
+ } else {
|
|
|
+ counts[pvalues[i]] = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Create a map iterator and point to beginning of map
|
|
|
+ std::map<float, unsigned int>::iterator it = counts.begin();
|
|
|
+ unsigned noccurences = 0;
|
|
|
+ float modeValue = 0.;
|
|
|
+ // Iterate over the map using Iterator till end.
|
|
|
+ while (it != counts.end())
|
|
|
+ {
|
|
|
+ // Accessing KEY from element pointed by it.
|
|
|
+ float potentialMode = it->first;
|
|
|
+ // Accessing VALUE from element pointed by it.
|
|
|
+ unsigned count = it->second;
|
|
|
+
|
|
|
+ if (count > noccurences) {
|
|
|
+ noccurences = count;
|
|
|
+ modeValue = potentialMode;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Increment the Iterator to point to next entry
|
|
|
+ it++;
|
|
|
+ }
|
|
|
+
|
|
|
+ return modeValue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // by default
|
|
|
+ return 0.;
|
|
|
+}
|
|
|
+
|
|
|
+int main(int argc, char *argv[]){
|
|
|
+
|
|
|
+ std::string folderName;
|
|
|
+ std::string estimator;
|
|
|
+ unsigned blockHeight;
|
|
|
+ unsigned blockWidth;
|
|
|
+ std::string outfileName;
|
|
|
+
|
|
|
+ for (int i = 1; i < argc; ++i) {
|
|
|
+ if (!strcmp(argv[i], "--folder") || !strcmp(argv[i], "-folder")) {
|
|
|
+ folderName = argv[++i];
|
|
|
+ } else if (!strcmp(argv[i], "--estimator") || !strcmp(argv[i], "-estimator")) {
|
|
|
+ estimator = argv[++i];
|
|
|
+ } else if (!strcmp(argv[i], "--bwidth") || !strcmp(argv[i], "-bwidth")) {
|
|
|
+ blockHeight = atoi(argv[++i]);
|
|
|
+ } else if (!strcmp(argv[i], "--bheight") || !strcmp(argv[i], "-bheight")) {
|
|
|
+ blockWidth = atoi(argv[++i]);
|
|
|
+ } else if (!strcmp(argv[i], "--outfile") || !strcmp(argv[i], "-outfile")) {
|
|
|
+ outfileName = argv[++i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<std::string> imagesPath;
|
|
|
+
|
|
|
+ for (const auto & entry : std::filesystem::directory_iterator(folderName)){
|
|
|
+ std::string imageName = entry.path().string();
|
|
|
+ if (rawls::HasExtension(imageName, ".rawls") || rawls::HasExtension(imageName, ".rawls_20")){
|
|
|
+ imagesPath.push_back(imageName);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ std::sort(imagesPath.begin(), imagesPath.end());
|
|
|
+
|
|
|
+ std::tuple<unsigned, unsigned, unsigned> data = rawls::getDimensionsRAWLS(imagesPath.at(0));
|
|
|
+
|
|
|
+ unsigned outputWidth = std::get<0>(data);
|
|
|
+ unsigned outputHeight = std::get<1>(data);
|
|
|
+ unsigned nbChanels = std::get<2>(data);
|
|
|
+
|
|
|
+ // new buffer size as new output buffer image (default 3 channels)
|
|
|
+ float* outputBuffer = new float[outputHeight * outputWidth * nbChanels];
|
|
|
+
|
|
|
+ // get all tiles to apply
|
|
|
+ unsigned nWidth = ceil(outputWidth / (float)blockWidth);
|
|
|
+ unsigned nHeight = ceil(outputHeight / (float)blockHeight);
|
|
|
+
|
|
|
+ std::vector<Tile> tiles;
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < nWidth; i++) {
|
|
|
+ for (unsigned j = 0; j < nHeight; j++) {
|
|
|
+
|
|
|
+ unsigned x1 = i * blockWidth;
|
|
|
+ unsigned y1 = j * blockHeight;
|
|
|
+
|
|
|
+ unsigned x2 = i * blockWidth + blockWidth;
|
|
|
+ unsigned y2 = j * blockHeight + blockHeight;
|
|
|
+
|
|
|
+ x2 = x2 > outputWidth ? outputWidth: x2;
|
|
|
+ y2 = y2 > outputHeight ? outputHeight: y2;
|
|
|
+
|
|
|
+ Point p1 = {x1, y1};
|
|
|
+ Point p2 = {x2, y2};
|
|
|
+
|
|
|
+ Tile tile = {p1, p2};
|
|
|
+ tiles.push_back(tile);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ unsigned nsamples = imagesPath.size();
|
|
|
+ unsigned nloop = tiles.size() * nsamples;
|
|
|
+ unsigned nloopCounter = 0;
|
|
|
+
|
|
|
+ for (unsigned t_index = 0; t_index < tiles.size(); t_index++){
|
|
|
+
|
|
|
+ Tile tile = tiles.at(t_index);
|
|
|
+
|
|
|
+ //std::cout << "Tile: (" << tile.p1.x << ", " << tile.p1.y << ")" << " => " << "(" << tile.p2.x << ", " << tile.p2.y << ")" << std::endl;
|
|
|
+
|
|
|
+ unsigned nvalues = (tile.p2.x - tile.p1.x) * (tile.p2.y - tile.p1.y) * 3;
|
|
|
+
|
|
|
+ std::vector<std::vector<float>> rgbValues(nvalues);
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < nsamples; i++) {
|
|
|
+
|
|
|
+ try {
|
|
|
+
|
|
|
+ float* RGBpixels = rawls::getPixelsRAWLS(imagesPath.at(i));
|
|
|
+
|
|
|
+ unsigned index = 0;
|
|
|
+ for (int y = tile.p1.y; y < tile.p2.y; ++y) {
|
|
|
+ for (int x = tile.p1.x; x < tile.p2.x; ++x) {
|
|
|
+
|
|
|
+ rgbValues.at(index).push_back(RGBpixels[3 * (y * outputWidth + x) + 0]);
|
|
|
+ rgbValues.at(index + 1).push_back(RGBpixels[3 * (y * outputWidth + x) + 1]);
|
|
|
+ rgbValues.at(index + 2).push_back(RGBpixels[3 * (y * outputWidth + x) + 2]);
|
|
|
+
|
|
|
+ index += 3;
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ delete RGBpixels;
|
|
|
+
|
|
|
+ } catch(std::exception& e){
|
|
|
+ std::cout << "Error occurs when reading file" << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ // display progress
|
|
|
+ nloopCounter += 1;
|
|
|
+ writeProgress(nloopCounter / (float)nloop);
|
|
|
+ }
|
|
|
+
|
|
|
+ // extract stat and add predicted value into output buffer
|
|
|
+ unsigned index = 0;
|
|
|
+
|
|
|
+ for (int y = tile.p1.y; y < tile.p2.y; ++y) {
|
|
|
+ for (int x = tile.p1.x; x < tile.p2.x; ++x) {
|
|
|
+
|
|
|
+ outputBuffer[3 * (y * outputWidth + x) + 0] = getEstimator(estimator, rgbValues.at(index + 0));
|
|
|
+ outputBuffer[3 * (y * outputWidth + x) + 1] = getEstimator(estimator, rgbValues.at(index + 1));
|
|
|
+ outputBuffer[3 * (y * outputWidth + x) + 2] = getEstimator(estimator, rgbValues.at(index + 2));
|
|
|
+
|
|
|
+ index += 3;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Save here new rawls image
|
|
|
+ std::string comments = rawls::getCommentsRAWLS(imagesPath.at(0));
|
|
|
+
|
|
|
+ bool success = rawls::saveAsRAWLS(outputWidth, outputHeight, nbChanels, comments, outputBuffer, outfileName);
|
|
|
+
|
|
|
+ if (success) {
|
|
|
+ std::cout << "New image saved into " << outfileName << std::endl;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ std::cout << "Error while saving current image " << outfileName << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ delete outputBuffer;
|
|
|
+
|
|
|
+}
|