123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- #include <iostream>
- #include <string.h>
- #include <memory>
- #include "lodepng.h"
- #include "rawls.h"
- #include <algorithm>
- #include <filesystem>
- #include <regex>
- // number of means expected
- const unsigned numberOfMeans = 20;
- void writeProgress(float progress, bool moveUp = false){
- int barWidth = 200;
- if (moveUp){
- // move up line
- std::cout << "\e[A";
- std::cout.flush();
- }
- std::cout << "[";
- int pos = barWidth * progress;
- for (int i = 0; i < barWidth; ++i) {
- if (i < pos) std::cout << "=";
- else if (i == pos) std::cout << ">";
- else std::cout << " ";
- }
- std::cout << "] " << int(progress * 100.0) << " %\r";
- std::cout.flush();
- }
- void insertSample(unsigned* occurences, float* values, float value){
- /* generate secret number: */
- unsigned foundIndex = rand() % numberOfMeans;
- values[foundIndex] += value;
- occurences[foundIndex] += 1;
- }
- /*
- * Compute array of means and sort values
- */
- float* prepareMeans(unsigned* occurences, float* values){
- float* means = new float[numberOfMeans];
- for (int i = 0; i < numberOfMeans; i++){
- means[i] = values[i] / occurences[i];
- }
- std::sort(means, means + numberOfMeans, std::less<float>());
- return means;
- }
- /*
- * Returns median value from array of values
- */
- float getMedianValue(float values[]){
- if (numberOfMeans % 2 == 0)
- {
- return (values[numberOfMeans / 2 - 1] + values[numberOfMeans / 2]) / 2;
- }
- else
- {
- return values[numberOfMeans / 2];
- }
- }
- /*
- * Save current step images from current buffer
- */
- bool saveCurrentImage(int width, int height, int nbChanels, float* buffer, std::string outfileName, std::string comments){
-
- // create outfile
- if (rawls::HasExtension(outfileName, ".ppm")){
- rawls::saveAsPPM(width, height, nbChanels, buffer, outfileName);
- }
- else if (rawls::HasExtension(outfileName, ".png")){
- rawls::saveAsPNG(width, height, nbChanels, buffer, outfileName);
- }
- else if (rawls::HasExtension(outfileName, ".rawls") || rawls::HasExtension(outfileName, ".rawls_20")){
-
- // Here no gamma conversion is done, only mean of samples
- rawls::saveAsRAWLS(width, height, nbChanels, comments, buffer, outfileName);
- }
- else{
- std::cout << "Unexpected output extension image" << std::endl;
- return false;
- }
- return true;
- }
- /*
- * Incremental merge of `rawls` images using `median-of-means`
- */
- int main(int argc, char *argv[]){
- /* initialize random seed: */
- srand ( time(NULL) );
- std::string folderName;
- std::string outputFolder;
- std::string prefixImageName;
- std::string imageExtension;
- unsigned step = 10;
- unsigned maxSamples = 0;
- bool random;
- for (int i = 1; i < argc; ++i) {
- if (!strcmp(argv[i], "--folder") || !strcmp(argv[i], "-folder")) {
- folderName = argv[++i];
- } else if (!strcmp(argv[i], "--step") || !strcmp(argv[i], "-step")) {
- step = atoi(argv[++i]);
- }else if (!strcmp(argv[i], "--random") || !strcmp(argv[i], "-random")) {
- random = bool(atoi(argv[++i]));
- }else if (!strcmp(argv[i], "--output") || !strcmp(argv[i], "-output")) {
- outputFolder = argv[++i];
- }else if (!strcmp(argv[i], "--prefix") || !strcmp(argv[i], "-prefix")) {
- prefixImageName = argv[++i];
- }else if (!strcmp(argv[i], "--max") || !strcmp(argv[i], "-max")) {
- maxSamples = atoi(argv[++i]);
- }else if (!strcmp(argv[i], "--extension") || !strcmp(argv[i], "-extension")) {
- imageExtension = argv[++i];
- }
- }
- std::vector<std::string> imagesPath;
- for (const auto & entry : std::filesystem::directory_iterator(folderName)){
- std::string imageName = entry.path().string();
- if (rawls::HasExtension(imageName, ".rawls") || rawls::HasExtension(imageName, ".rawls_20")){
- imagesPath.push_back(imageName);
- }
- }
- // sort or shuffle the images path
- if (!random){
- std::sort(imagesPath.begin(), imagesPath.end(), std::less<std::string>());
- }else{
- std::random_shuffle(imagesPath.begin(), imagesPath.end());
- }
- unsigned width, height, nbChanels;
- float** sumBuffer; // stores sum array for each sample
- unsigned** occurencesMeanBuffer;
- float* outputStepBuffer; // buffer which stores kept median for each generated image (median is found using `outputMeanBuffer`)
- if (imagesPath.size() > 0){
- std::tuple<unsigned, unsigned, unsigned> dimensions = rawls::getDimensionsRAWLS(imagesPath.at(0));
- width = std::get<0>(dimensions);
- height = std::get<1>(dimensions);
- nbChanels = std::get<2>(dimensions);
- // init all pointers size
- sumBuffer = new float*[width * height * nbChanels];
- occurencesMeanBuffer = new unsigned*[width * height * nbChanels];
- outputStepBuffer = new float[width * height * nbChanels];
- // init values of buffer
- for (int i = 0; i < height * width * nbChanels; i++){
- // define array size and initialization
- sumBuffer[i] = new float[numberOfMeans];
- occurencesMeanBuffer[i] = new unsigned[numberOfMeans];
- for (int j = 0; j < numberOfMeans; j++){
- sumBuffer[i][j] = 0;
- occurencesMeanBuffer[i][j] = 0;
- }
- outputStepBuffer[i] = 0;
- }
- }
- else
- {
- std::cout << "Folder is empty..." << std::endl;
- return 1;
- }
- // just for indication
- float progress = 0.0;
- unsigned bufferSize = width * height * nbChanels;
- std::string comments;
- // get comments if output is also `rawls` file
- if (rawls::HasExtension(imageExtension, "rawls")){
- comments = rawls::getCommentsRAWLS(imagesPath.at(0));
- }
- for (unsigned i = 0; i < maxSamples; i++){
- unsigned currentSample = i + 1;
- // read into folder all `.rawls` file and merge pixels values
- float* buffer = rawls::getPixelsRAWLS(imagesPath.at(i));
- for(unsigned y = 0; y < height; y++){
- for(unsigned x = 0; x < width; x++) {
- for(unsigned j = 0; j < nbChanels; j++){
-
- unsigned currentIndex = nbChanels * width * y + nbChanels * x + j;
-
- float value = buffer[currentIndex];
- // add new `luminance` of chanel[j] found randomly (uniformly) into means array
- insertSample(occurencesMeanBuffer[currentIndex], sumBuffer[currentIndex], value);
- }
- }
- }
- // save a new
- if (currentSample % step == 0){
- float currentMean;
- // get median all samples values by number of samples used (using MON method)
- for (int j = 0; j < height * width * nbChanels; j++){
- float* means = prepareMeans(occurencesMeanBuffer[j], sumBuffer[j]);
- // get meadian of these means as expected output luminance
- outputStepBuffer[j] = getMedianValue(means);
- // remove pointer values
- delete means;
- }
- // add suffix with `5` digits
- std::string suffix = std::to_string(currentSample);
-
- while(suffix.length() < 5){
- suffix = "0" + suffix;
- }
- // build output path of image
- std::string outfileName = outputFolder + "/" + prefixImageName + "_" + suffix + "." + imageExtension;
- outfileName = std::regex_replace(outfileName, std::regex("\\//"), "/"); // fix path
- // save the expected `step` image using built outpath
- saveCurrentImage(width, height, nbChanels, outputStepBuffer, outfileName, comments);
- // just for progress information with erasing previous info
- writeProgress(progress, true);
- }
- // update and write progress information
- progress += (1 / (float)maxSamples);
- writeProgress(progress);
- delete buffer;
- }
-
- writeProgress(1.);
- std::cout << std::endl;
- // clear all pointers memory
- for (int j = 0; j < height * width * nbChanels; j++){
- delete[] sumBuffer[j];
- delete[] occurencesMeanBuffer[j];
- }
- delete sumBuffer;
- delete occurencesMeanBuffer;
- delete outputStepBuffer;
- }
|