NoiseAnalysis
Description
Analysis of different noises using singular values vector obtained from SVD compression.
Noise list :
- cauchy
- gaussian
- laplace
- log_normal
- mut_white
- salt_pepper
- white
Scripts
noise_computation.py
This script is used to compute all noise for each image in the images folder.
python noise_computation.py --noise salt_pepper --image path/to/image.png --n 1000 --identical 1 --output image_salt_pepper.png --all 1 --p 0.1
Parameters :
- noise : specify the noise to use (one available from the list above)
- image : source path of the image we want to add noise
- n : level of noise to use
- identical : same noise or not for each chanel in case of RGB image
- output : output image name wanted
- all : generate all level noise from 1 to n
- p : optional parameter only used for salt and pepper noise
noise_svd_visualization.py
This script is used to display noise for each level of noise of image.
python noise_svd_visualization.py --prefix generated/${image}/${noise} --metric lab --n 1000 --mode svdne --interval "0, 200" --step 40 --norm 0 --ylim "0, 0.05"
Parameters :
- prefix : specify the folder of image for specific noise
- metric : metric choice to compute in order to extract SVD data
- mode : level of normalization ['svd', 'svdn', 'svdne']
- interval : features to display from singular values vector
- step : interval of noise to keep for display
- norm : normalization between only values kept from interval
- ylim : ylim to use in order to display curves