Parcourir la source

Merge branch 'release/v0.3.5'

Jérôme BUISINE il y a 3 ans
Parent
commit
0f6308b682

Fichier diff supprimé car celui-ci est trop grand
+ 3280 - 0
OpenML_datasets/internet-advertissment.csv


Fichier diff supprimé car celui-ci est trop grand
+ 0 - 2601
OpenML_datasets/madelon.csv


+ 64 - 0
features_selection/methods.py

@@ -0,0 +1,64 @@
+from sklearn.feature_selection import VarianceThreshold
+from sklearn.feature_selection import SelectKBest
+from sklearn.feature_selection import chi2
+from sklearn.svm import LinearSVC
+from sklearn.feature_selection import SelectFromModel
+from sklearn.svm import SVC
+from sklearn.model_selection import StratifiedKFold
+from sklearn.feature_selection import RFECV
+from sklearn.ensemble import ExtraTreesClassifier
+
+features_selection_list = [
+    "variance_threshold",
+    "kbest",
+    "linearSVC",
+    "tree",
+    "rfecv"
+]
+
+def features_selection_method(name, params, X_train, y_train, problem_size):
+
+    indices = []
+
+    if name == "variance_threshold":
+        percent_to_keep = float(params)
+        #sel = VarianceThreshold(threshold=(percent_to_keep * (1 - percent_to_keep)))
+        sel = VarianceThreshold(threshold=(percent_to_keep))
+        sel.fit_transform(X_train)
+
+        indices = sel.get_support(indices=True)
+
+    if name == "kbest":
+        k_param = int(float(params) * problem_size) # here it's a percent over the whole dataset
+        model = SelectKBest(chi2, k=k_param).fit_transform(X_train, y_train)
+
+        indices = model.get_support(indices=True)
+
+    if name == "linearSVC":
+        C_param = float(params)
+        lsvc = LinearSVC(C=C_param, penalty="l1", dual=False).fit(X_train, y_train)
+        model = SelectFromModel(lsvc, prefit=True)
+
+        indices = model.get_support(indices=True)
+
+    if name == "tree":
+        n_estimarors_param = int(params)
+        clf = ExtraTreesClassifier(n_estimators=n_estimarors_param)
+        clf = clf.fit(X_train, y_train)
+        model = SelectFromModel(clf, prefit=True)
+
+        indices = model.get_support(indices=True)
+
+    if name == "rfecv":
+        cv_param = int(params)
+        # Create the RFE object and compute a cross-validated score
+        svc = SVC(kernel="linear")
+        # The "accuracy" scoring is proportional to the number of correct
+        # classifications
+        rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(cv_param),
+                    scoring='roc_auc')
+        rfecv.fit(X_train, y_train)
+
+        indices = rfecv.get_support(indices=True)
+
+    return indices

+ 71 - 0
features_selection/run_all_openML.py

@@ -0,0 +1,71 @@
+import os, argparse
+
+params = {
+    "variance_threshold": [
+        "0.001",
+        "0.01",
+        "0.05",
+        "0.1",
+    ],
+    "kbest": [
+        "0.9",
+        "0.8",
+        "0.7",
+        "0.6",
+    ],
+    "linearSVC": [
+        "0.1",
+        "1",
+        "10",
+        "100"
+    ],
+    "tree": [
+        "10",
+        "50",
+        "100",
+        "200",
+    ],
+    "rfecv": [
+        "3",
+        "4",
+        "5"
+    ]
+}
+
+open_ml_problems_folder = 'OpenML_datasets'
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Get features extraction from specific methods and params")
+
+    parser.add_argument('--ntrain', type=int, help='number of training in order to keep mean of score', default=1)
+    parser.add_argument('--output', type=str, help='output features selection results', required=True)
+
+    args = parser.parse_args()
+
+    p_ntrain    = args.ntrain
+    p_output    = args.output
+
+    open_ml_problems = sorted(os.listdir(open_ml_problems_folder))
+
+    for ml_problem in open_ml_problems:
+
+        ml_problem_name = ml_problem.replace('.csv', '')
+        ml_problem_path = os.path.join(open_ml_problems_folder, ml_problem)
+
+        for key, values in params.items():
+
+            for param in values:
+
+                print(f'Run features selection for OpenML `{ml_problem_name}` problem with {{method: {key}, params: {param}, ntrain: {p_ntrain}}}')
+                command_str = f'python features_selection/run_method_openML.py ' \
+                            f'--data {ml_problem_path} ' \
+                            f'--method {key} ' \
+                            f'--params {param} ' \
+                            f'--ntrain {p_ntrain} ' \
+                            f'--output {p_output}'
+                             
+                os.system(command_str)
+
+if __name__ == "__main__":
+    main()

+ 147 - 0
features_selection/run_method_openML.py

@@ -0,0 +1,147 @@
+import os, argparse
+
+import numpy as np
+import pandas as pd
+
+from sklearn.model_selection import train_test_split
+from sklearn.preprocessing import MinMaxScaler
+from sklearn.model_selection import GridSearchCV
+from sklearn.metrics import roc_auc_score, accuracy_score
+import sklearn.svm as svm
+
+from methods import features_selection_list, features_selection_method
+
+
+def train_model(X_train, y_train):
+
+    print ('Creating model...')
+    # here use of SVM with grid search CV
+    Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
+    gammas = [0.001, 0.01, 0.1,10, 100, 1000]
+    param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
+
+    svc = svm.SVC(probability=True, class_weight='balanced')
+    clf = GridSearchCV(svc, param_grid, cv=2, verbose=1, n_jobs=-1)
+
+    clf.fit(X_train, y_train)
+
+    model = clf.best_estimator_
+
+    return model
+
+def loadDataset(filename):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    dataset = pd.read_csv(filename, sep=',')
+
+    # change label as common
+    min_label_value = min(dataset.iloc[:, -1])
+    max_label_value = max(dataset.iloc[:, -1])
+
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
+
+    X_dataset = dataset.iloc[:, :-1]
+    y_dataset = dataset.iloc[:, -1]
+
+    problem_size = len(X_dataset.columns)
+
+    # min/max normalisation over feature
+    # create a scaler object
+    scaler = MinMaxScaler()
+    # fit and transform the data
+    X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
+
+    # prepare train, validation and test datasets
+    X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
+
+    return X_train, y_train, X_test, y_test, problem_size
+
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Get features extraction from specific method")
+
+    parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
+    parser.add_argument('--method', type=str, help='method name to use', choices=features_selection_list, required=True)
+    parser.add_argument('--params', type=str, help='params used for the current selected method', required=True)
+    parser.add_argument('--ntrain', type=int, help='number of training in order to keep mean of score', default=1)
+    parser.add_argument('--output', type=str, help='output features selection results')
+
+    args = parser.parse_args()
+
+    p_data_file = args.data
+    p_method    = args.method
+    p_params    = args.params
+    p_ntrain    = args.ntrain
+    p_output    = args.output
+
+    # load data from file and get problem size
+    X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
+
+    # extract indices selected features
+    features_indices = features_selection_method(p_method, p_params, X_train, y_train, problem_size)
+
+    print(f'Selected features {len(features_indices)} over {problem_size}')
+
+    auc_scores = []
+    acc_scores = []
+    
+    for i in range(p_ntrain):
+
+        # new split of dataset
+        X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
+
+        # get reduced dataset
+        X_train_reduced = X_train[:, features_indices]
+        X_test_reduced = X_test[:, features_indices]
+
+
+        # get trained model over reduce dataset
+        model = train_model(X_train_reduced, y_train)
+
+        # get predicted labels over test dataset
+        y_test_model = model.predict(X_test_reduced)
+        y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
+        test_roc_auc = roc_auc_score(y_test, y_test_predict)
+        test_acc = accuracy_score(y_test, y_test_predict)
+
+        print(f'Run n°{i}: {test_roc_auc} (AUC ROC)')
+
+        # append score into list of run
+        auc_scores.append(test_roc_auc)
+        acc_scores.append(test_acc)
+
+    mean_auc_score = sum(auc_scores) / len(auc_scores)
+    mean_acc_score = sum(acc_scores) / len(acc_scores)
+
+    var_acc_score = np.var(acc_scores)
+    var_auc_score = np.var(auc_scores)
+
+    std_acc_score = np.std(acc_scores)
+    std_auc_score = np.std(auc_scores)
+
+    print(f'Model performance using {p_method} (params: {p_params}) is of {mean_auc_score:.2f}')
+
+    # now save trained model and params obtained
+    header_line = 'dataset;method;params;ntrain;n_features;acc_test;auc_test;var_acc_test;var_auc_test;std_acc_test;std_auc_test;features_indices\n'
+    data_line = f'{p_data_file};{p_method};{p_params};{p_ntrain};{len(features_indices)};{mean_acc_score};{mean_auc_score};{var_acc_score};{var_auc_score};{std_acc_score};{std_auc_score};{" ".join(list(map(str, features_indices)))}\n'
+
+    output_folder, _ = os.path.split(p_output)
+
+    if len(output_folder) > 0:
+        if not os.path.exists(output_folder):
+            os.makedirs(output_folder)
+
+    if not os.path.exists(p_output):
+        with open(p_output, 'w') as f:
+            f.write(header_line)
+
+    with open(p_output, 'a') as f:
+        f.write(data_line)
+    
+
+if __name__ == "__main__":
+    main()

+ 1 - 1
find_best_attributes.py

@@ -190,7 +190,7 @@ def main():
                 filters_counter += 1
 
 
-    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness())
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness)
     with open(filename_path, 'a') as f:
         f.write(line_info + '\n')
     

+ 91 - 63
find_best_attributes_surrogate.py

@@ -26,20 +26,23 @@ sys.path.insert(0, '') # trick to enable import of main folder module
 import custom_config as cfg
 import models as mdl
 
-from optimization.ILSSurrogate import ILSSurrogate
-from macop.solutions.BinarySolution import BinarySolution
+from optimization.ILSPopSurrogate import ILSPopSurrogate
+from macop.solutions.discrete import BinarySolution
+from macop.evaluators.base import Evaluator
 
-from macop.operators.mutators.SimpleMutation import SimpleMutation
-from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
-from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
-from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
+from macop.operators.discrete.mutators import SimpleMutation
+from macop.operators.discrete.mutators import SimpleBinaryMutation
+from macop.operators.discrete.crossovers import SimpleCrossover
+from macop.operators.discrete.crossovers import RandomSplitCrossover
+from optimization.operators.SimplePopCrossover import SimplePopCrossover, RandomPopCrossover
 
-from macop.operators.policies.UCBPolicy import UCBPolicy
+from macop.policies.reinforcement import UCBPolicy
 
-from macop.callbacks.BasicCheckpoint import BasicCheckpoint
-from macop.callbacks.UCBCheckpoint import UCBCheckpoint
+from macop.callbacks.classicals import BasicCheckpoint
+from macop.callbacks.policies import UCBCheckpoint
+from optimization.callbacks.MultiPopCheckpoint import MultiPopCheckpoint
 
-from sklearn.ensemble import RandomForestClassifier
+#from sklearn.ensemble import RandomForestClassifier
 
 # variables and parameters
 models_list         = cfg.models_names_list
@@ -58,6 +61,8 @@ def loadDataset(filename):
     ########################
     # 1. Get and prepare data
     ########################
+    # scene_name; zone_id; image_index_end; label; data
+
     dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
     dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
 
@@ -66,12 +71,12 @@ def loadDataset(filename):
     dataset_test = shuffle(dataset_test)
 
     # get dataset with equal number of classes occurences
-    noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
-    not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
+    noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 1]
+    not_noisy_df_train = dataset_train[dataset_train.iloc[:, 3] == 0]
     #nb_noisy_train = len(noisy_df_train.index)
 
-    noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
-    not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
+    noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 1]
+    not_noisy_df_test = dataset_test[dataset_test.iloc[:, 3] == 0]
     #nb_noisy_test = len(noisy_df_test.index)
 
     # use of all data
@@ -83,22 +88,40 @@ def loadDataset(filename):
     final_df_test = shuffle(final_df_test)
 
     # use of the whole data set for training
-    x_dataset_train = final_df_train.iloc[:,1:]
-    x_dataset_test = final_df_test.iloc[:,1:]
+    x_dataset_train = final_df_train.iloc[:, 4:]
+    x_dataset_test = final_df_test.iloc[:, 4:]
 
-    y_dataset_train = final_df_train.iloc[:,0]
-    y_dataset_test = final_df_test.iloc[:,0]
+    y_dataset_train = final_df_train.iloc[:, 3]
+    y_dataset_test = final_df_test.iloc[:, 3]
 
     return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
 
+def _get_best_model(X_train, y_train):
+
+    Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
+    gammas = [0.001, 0.01, 0.1, 5, 10, 100]
+    param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
+
+    svc = svm.SVC(probability=True, class_weight='balanced')
+    #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
+    clf = GridSearchCV(svc, param_grid, cv=5, verbose=0, n_jobs=-1)
+
+    clf.fit(X_train, y_train)
+
+    model = clf.best_estimator_
+
+    return model
+
 def main():
 
     parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
 
     parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
-    parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list, default=models_list[0], required=False)
-    parser.add_argument('--start_surrogate', type=int, help='number of evalution before starting surrogare model', default=1000)
+    parser.add_argument('--start_surrogate', type=int, help='number of evalution before starting surrogare model', required=True)
+    parser.add_argument('--train_every', type=int, help='max number of evalution before retraining surrogare model', required=True)
     parser.add_argument('--length', type=int, help='max data length (need to be specify for evaluator)', required=True)
+    parser.add_argument('--pop', type=int, help='pop size', required=True)
+    parser.add_argument('--order', type=int, help='walsh order function', required=True)
     parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
     parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
     parser.add_argument('--output', type=str, help='output surrogate model name')
@@ -106,9 +129,11 @@ def main():
     args = parser.parse_args()
 
     p_data_file = args.data
-    p_choice    = args.choice
     p_length    = args.length
+    p_pop       = args.pop
+    p_order     = args.order
     p_start     = args.start_surrogate
+    p_retrain   = args.train_every
     p_ils_iteration = args.ils
     p_ls_iteration  = args.ls
     p_output = args.output
@@ -126,42 +151,41 @@ def main():
 
     # init solution (`n` attributes)
     def init():
-        return BinarySolution([], p_length
-        ).random(validator)
+        return BinarySolution.random(p_length, validator)
 
-    # define evaluate function here (need of data information)
-    def evaluate(solution):
 
-        start = datetime.datetime.now()
+    class SVMEvaluator(Evaluator):
 
-        # get indices of filters data to use (filters selection from solution)
-        indices = []
+        # define evaluate function here (need of data information)
+        def compute(self, solution):
+            start = datetime.datetime.now()
 
-        for index, value in enumerate(solution.data): 
-            if value == 1: 
-                indices.append(index) 
+            # get indices of filters data to use (filters selection from solution)
+            indices = []
 
-        # keep only selected filters from solution
-        x_train_filters = x_train.iloc[:, indices]
-        y_train_filters = y_train
-        x_test_filters = x_test.iloc[:, indices]
-        
-        # TODO : use of GPU implementation of SVM
-        # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+            for index, value in enumerate(solution.data): 
+                if value == 1: 
+                    indices.append(index) 
 
-        model = RandomForestClassifier(n_estimators=10)
-        model = model.fit(x_train_filters, y_train_filters)
-        
-        y_test_model = model.predict(x_test_filters)
-        test_roc_auc = roc_auc_score(y_test, y_test_model)
+            # keep only selected filters from solution
+            x_train_filters = self._data['x_train'].iloc[:, indices]
+            y_train_filters = self._data['y_train']
+            x_test_filters = self._data['x_test'].iloc[:, indices]
+            
+            model = _get_best_model(x_train_filters, y_train_filters)
+            #model = RandomForestClassifier(n_estimators=10)
+            #model = model.fit(x_train_filters, y_train_filters)
+            
+            y_test_model = model.predict(x_test_filters)
+            test_roc_auc = roc_auc_score(self._data['y_test'], y_test_model)
 
-        end = datetime.datetime.now()
+            end = datetime.datetime.now()
 
-        diff = end - start
+            diff = end - start
 
-        print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+            #print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
 
-        return test_roc_auc
+            return test_roc_auc
 
 
     # build all output folder and files based on `output` name
@@ -182,28 +206,31 @@ def main():
     ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
 
     # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
-    operators = [SimpleBinaryMutation(), SimpleMutation()]
-    policy = UCBPolicy(operators)
+    operators = [SimpleBinaryMutation(), SimpleMutation(), RandomPopCrossover(), SimplePopCrossover()]
+    policy = UCBPolicy(operators, C=100, exp_rate=0.1)
 
     # define first line if necessary
     if not os.path.exists(surrogate_output_data):
-        with open(surrogate_output_data) as f:
+        with open(surrogate_output_data, 'w') as f:
             f.write('x;y\n')
 
     # custom ILS for surrogate use
-    algo = ILSSurrogate(_initalizer=init, 
-                        _evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
-                        _operators=operators, 
-                        _policy=policy, 
-                        _validator=validator,
-                        _surrogate_file_path=surrogate_output_model,
-                        _start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
-                        _solutions_file=surrogate_output_data,
-                        _ls_train_surrogate=1,
-                        _maximise=True)
+    algo = ILSPopSurrogate(initalizer=init, 
+                        evaluator=SVMEvaluator(data={'x_train': x_train, 'y_train': y_train, 'x_test': x_test, 'y_test': y_test}), # same evaluator by default, as we will use the surrogate function
+                        operators=operators, 
+                        policy=policy, 
+                        validator=validator,
+                        population_size=p_pop,
+                        surrogate_file_path=surrogate_output_model,
+                        start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
+                        solutions_file=surrogate_output_data,
+                        walsh_order=p_order,
+                        inter_policy_ls_file=os.path.join(backup_model_folder, p_output + '_ls_ucbPolicy.csv'),
+                        ls_train_surrogate=p_retrain,
+                        maximise=True)
     
-    algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
-    algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
+    algo.addCallback(MultiPopCheckpoint(every=1, filepath=backup_file_path))
+    algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
 
     bestSol = algo.run(p_ils_iteration, p_ls_iteration)
 
@@ -217,6 +244,7 @@ def main():
     filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
 
     filters_counter = 0
+
     # count number of filters
     for index, item in enumerate(bestSol.data):
         if index != 0 and index % 2 == 1:
@@ -226,7 +254,7 @@ def main():
                 filters_counter += 1
 
 
-    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness())
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness)
     with open(filename_path, 'a') as f:
         f.write(line_info + '\n')
     

+ 20 - 15
find_best_attributes_surrogate_dl.py

@@ -79,7 +79,7 @@ def build_input(df):
 def validator(solution):
 
     # at least 5 attributes
-    if list(solution.data).count(1) < 5:
+    if list(solution._data).count(1) < 5:
         return False
 
     return True
@@ -168,6 +168,7 @@ def main():
     parser.add_argument('--length', type=int, help='max data length (need to be specify for evaluator)', required=True)
     parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
     parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
+    parser.add_argument('--every_ls', type=int, help='number of max iteration for retraining surrogate model', required=True)
     parser.add_argument('--output', type=str, help='output surrogate model name')
 
     args = parser.parse_args()
@@ -177,6 +178,7 @@ def main():
     p_start     = args.start_surrogate
     p_ils_iteration = args.ils
     p_ls_iteration  = args.ls
+    p_every_ls      = args.every_ls
     p_output = args.output
 
     print(p_data_file)
@@ -202,7 +204,7 @@ def main():
         # get indices of filters data to use (filters selection from solution)
         indices = []
 
-        for index, value in enumerate(solution.data): 
+        for index, value in enumerate(solution._data): 
             if value == 1: 
                 indices.append(index) 
 
@@ -230,6 +232,7 @@ def main():
         test_roc_auc = roc_auc_score(y_test, y_test_predict)
 
         end = datetime.datetime.now()
+        del model
 
         diff = end - start
 
@@ -254,6 +257,7 @@ def main():
 
     backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
     ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
+    surrogate_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_train.csv')
 
     # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
     operators = [SimpleBinaryMutation(), SimpleMutation()]
@@ -270,19 +274,20 @@ def main():
             f.write('x;y\n')
 
     # custom ILS for surrogate use
-    algo = ILSSurrogate(_initalizer=init, 
-                        _evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
-                        _operators=operators, 
-                        _policy=policy, 
-                        _validator=validator,
-                        _surrogate_file_path=surrogate_output_model,
-                        _start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
-                        _solutions_file=surrogate_output_data,
-                        _ls_train_surrogate=1,
-                        _maximise=True)
+    algo = ILSSurrogate(initalizer=init, 
+                        evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
+                        operators=operators, 
+                        policy=policy, 
+                        validator=validator,
+                        surrogate_file_path=surrogate_output_model,
+                        start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
+                        solutions_file=surrogate_output_data,
+                        ls_train_surrogate=p_every_ls,
+                        maximise=True)
     
-    algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
-    algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
+    algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path))
+    algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
+    algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this
 
     bestSol = algo.run(p_ils_iteration, p_ls_iteration)
 
@@ -305,7 +310,7 @@ def main():
                 filters_counter += 1
 
 
-    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness())
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness)
     with open(filename_path, 'a') as f:
         f.write(line_info + '\n')
     

+ 32 - 28
find_best_attributes_surrogate_openML.py

@@ -14,10 +14,6 @@ from sklearn.model_selection import GridSearchCV
 from sklearn.linear_model import LogisticRegression
 from sklearn.ensemble import RandomForestClassifier, VotingClassifier
 
-from keras.layers import Dense, Dropout, LSTM, Embedding, GRU, BatchNormalization
-from keras.preprocessing.sequence import pad_sequences
-from keras.models import Sequential
-
 import joblib
 import sklearn
 import sklearn.svm as svm
@@ -44,6 +40,7 @@ from macop.operators.policies.UCBPolicy import UCBPolicy
 
 from macop.callbacks.BasicCheckpoint import BasicCheckpoint
 from macop.callbacks.UCBCheckpoint import UCBCheckpoint
+from optimization.callbacks.SurrogateCheckpoint import SurrogateCheckpoint
 
 from sklearn.ensemble import RandomForestClassifier
 
@@ -52,22 +49,22 @@ from sklearn.ensemble import RandomForestClassifier
 def validator(solution):
 
     # at least 5 attributes
-    if list(solution.data).count(1) < 5:
+    if list(solution._data).count(1) < 2:
         return False
 
     return True
 
 def train_model(X_train, y_train):
 
-    print ('Creating model...')
+    #print ('Creating model...')
     # here use of SVM with grid search CV
-    Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
-    gammas = [0.001, 0.01, 0.1, 5, 10, 100]
+    Cs = [0.001, 0.01, 0.1, 1, 10, 100]
+    gammas = [0.001, 0.01, 0.1,10, 100]
     param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
 
     svc = svm.SVC(probability=True, class_weight='balanced')
     #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
-    clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, n_jobs=-1)
+    clf = GridSearchCV(svc, param_grid, cv=4, verbose=0, n_jobs=-1)
 
     clf.fit(X_train, y_train)
 
@@ -77,8 +74,6 @@ def train_model(X_train, y_train):
 
 def loadDataset(filename):
 
-    # TODO : load data using DL RNN 
-
     ########################
     # 1. Get and prepare data
     ########################
@@ -113,7 +108,7 @@ def main():
     parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
 
     parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
-    #parser.add_argument('--start_surrogate', type=int, help='number of evalution before starting surrogare model', default=100)
+    parser.add_argument('--every_ls', type=int, help='train every ls surrogate model', default=50) # default value
     parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
     parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
     parser.add_argument('--output', type=str, help='output surrogate model name')
@@ -121,7 +116,7 @@ def main():
     args = parser.parse_args()
 
     p_data_file = args.data
-    #p_start     = args.start_surrogate
+    p_every_ls   = args.every_ls
     p_ils_iteration = args.ils
     p_ls_iteration  = args.ls
     p_output = args.output
@@ -147,10 +142,12 @@ def main():
         # get indices of filters data to use (filters selection from solution)
         indices = []
 
-        for index, value in enumerate(solution.data): 
+        for index, value in enumerate(solution._data): 
             if value == 1: 
                 indices.append(index) 
 
+        print(f'Training SVM with {len(indices)} from {len(solution._data)} available features')
+
         # keep only selected filters from solution
         x_train_filters = X_train[:, indices]
         x_test_filters = X_test[ :, indices]
@@ -187,6 +184,7 @@ def main():
 
     backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
     ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
+    surrogate_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_train.csv')
 
     # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
     operators = [SimpleBinaryMutation(), SimpleMutation()]
@@ -204,23 +202,29 @@ def main():
 
 
     # custom start surrogate variable based on problem size
-    p_start = int(problem_size)
+    p_start = int(0.5 * problem_size)
+
+    # fixed limit
+    if p_start < 50:
+        p_start = 50
+
     print(f'Starting using surrogate after {p_start} reals training')
 
     # custom ILS for surrogate use
-    algo = ILSSurrogate(_initalizer=init, 
-                        _evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
-                        _operators=operators, 
-                        _policy=policy, 
-                        _validator=validator,
-                        _surrogate_file_path=surrogate_output_model,
-                        _start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
-                        _solutions_file=surrogate_output_data,
-                        _ls_train_surrogate=1,
-                        _maximise=True)
+    algo = ILSSurrogate(initalizer=init, 
+                        evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
+                        operators=operators, 
+                        policy=policy, 
+                        validator=validator,
+                        surrogate_file_path=surrogate_output_model,
+                        start_train_surrogate=p_start, # start learning and using surrogate after 1000 real evaluation
+                        solutions_file=surrogate_output_data,
+                        ls_train_surrogate=p_every_ls, # retrain surrogate every 5 iteration
+                        maximise=True)
     
-    algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
-    algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
+    algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path))
+    algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
+    algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this
 
     bestSol = algo.run(p_ils_iteration, p_ls_iteration)
 
@@ -233,7 +237,7 @@ def main():
 
     filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
 
-    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(bestSol.fitness())
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(bestSol.fitness)
     with open(filename_path, 'a') as f:
         f.write(line_info + '\n')
     

+ 271 - 0
find_best_attributes_surrogate_openML_multi.py

@@ -0,0 +1,271 @@
+# main imports
+import os
+import sys
+import argparse
+import pandas as pd
+import numpy as np
+import logging
+import datetime
+import random
+
+# model imports
+from sklearn.model_selection import train_test_split
+from sklearn.model_selection import GridSearchCV
+from sklearn.linear_model import LogisticRegression
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
+
+import joblib
+import sklearn
+import sklearn.svm as svm
+from sklearn.utils import shuffle
+from sklearn.metrics import roc_auc_score
+from sklearn.model_selection import cross_val_score
+from sklearn.preprocessing import MinMaxScaler
+
+# modules and config imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+import custom_config as cfg
+import models as mdl
+
+from optimization.ILSMultiSurrogate import ILSMultiSurrogate
+from macop.solutions.BinarySolution import BinarySolution
+
+from macop.operators.mutators.SimpleMutation import SimpleMutation
+from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
+from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
+from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
+
+from macop.operators.policies.UCBPolicy import UCBPolicy
+
+from macop.callbacks.BasicCheckpoint import BasicCheckpoint
+from macop.callbacks.UCBCheckpoint import UCBCheckpoint
+from optimization.callbacks.SurrogateCheckpoint import SurrogateCheckpoint
+from optimization.callbacks.MultiSurrogateCheckpoint import MultiSurrogateCheckpoint
+
+from sklearn.ensemble import RandomForestClassifier
+
+# avoid display of warning
+def warn(*args, **kwargs):
+    pass
+
+import warnings
+warnings.filterwarnings("ignore", category=DeprecationWarning)
+warnings.warn = warn
+
+# default validator
+def validator(solution):
+
+    # at least 5 attributes
+    if list(solution._data).count(1) < 2:
+        return False
+
+    return True
+
+def train_model(X_train, y_train):
+
+    #print ('Creating model...')
+    # here use of SVM with grid search CV
+    Cs = [0.001, 0.01, 0.1, 1, 10, 100]
+    gammas = [0.001, 0.01, 0.1,10, 100]
+    param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
+
+    svc = svm.SVC(probability=True, class_weight='balanced')
+    #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
+    clf = GridSearchCV(svc, param_grid, cv=4, verbose=0, n_jobs=-1)
+
+    clf.fit(X_train, y_train)
+
+    model = clf.best_estimator_
+
+    return model
+
+def loadDataset(filename):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    dataset = pd.read_csv(filename, sep=',')
+
+    # change label as common
+    min_label_value = min(dataset.iloc[:, -1])
+    max_label_value = max(dataset.iloc[:, -1])
+
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
+
+    X_dataset = dataset.iloc[:, :-1]
+    y_dataset = dataset.iloc[:, -1]
+
+    problem_size = len(X_dataset.columns)
+
+    # min/max normalisation over feature
+    # create a scaler object
+    scaler = MinMaxScaler()
+    # fit and transform the data
+    X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
+
+    # prepare train, validation and test datasets
+    X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
+
+    return X_train, y_train, X_test, y_test, problem_size
+
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
+
+    parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
+    parser.add_argument('--every_ls', type=int, help='train every ls surrogate model', default=50) # default value
+    parser.add_argument('--k_division', type=int, help='number of expected sub surrogate model', default=20)
+    parser.add_argument('--k_dynamic', type=int, help='specify if indices for each sub surrogate model are changed or not for each training', default=0, choices=[0, 1])
+    parser.add_argument('--k_random', type=int, help='specify if split is random or not', default=1, choices=[0, 1])
+    parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
+    parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
+    parser.add_argument('--generate_only', type=int, help='number of iteration for Local Search algorithm', default=0, choices=[0, 1])
+    parser.add_argument('--output', type=str, help='output surrogate model name')
+
+    args = parser.parse_args()
+
+    p_data_file = args.data
+    p_every_ls   = args.every_ls
+    p_k_division = args.k_division
+    p_k_dynamic = bool(args.k_dynamic)
+    p_k_random = bool(args.k_random)
+    p_ils_iteration = args.ils
+    p_ls_iteration  = args.ls
+    p_generate_only = bool(args.generate_only)
+    p_output = args.output
+
+    # load data from file and get problem size
+    X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
+
+    # create `logs` folder if necessary
+    if not os.path.exists(cfg.output_logs_folder):
+        os.makedirs(cfg.output_logs_folder)
+
+    logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG)
+
+    # init solution (`n` attributes)
+    def init():
+        return BinarySolution([], problem_size).random(validator)
+
+    # define evaluate function here (need of data information)
+    def evaluate(solution):
+
+        start = datetime.datetime.now()
+
+        # get indices of filters data to use (filters selection from solution)
+        indices = []
+
+        for index, value in enumerate(solution._data): 
+            if value == 1: 
+                indices.append(index) 
+
+        print(f'Training SVM with {len(indices)} from {len(solution._data)} available features')
+
+        # keep only selected filters from solution
+        x_train_filters = X_train[:, indices]
+        x_test_filters = X_test[ :, indices]
+        
+        # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+        model = train_model(x_train_filters, y_train)
+
+        y_test_model = model.predict(x_test_filters)
+        y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
+        test_roc_auc = roc_auc_score(y_test, y_test_predict)
+
+        end = datetime.datetime.now()
+
+        diff = end - start
+
+        print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+
+        return test_roc_auc
+
+
+    # build all output folder and files based on `output` name
+    backup_model_folder = os.path.join(cfg.output_backup_folder, p_output)
+    surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output)
+    surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output)
+
+    if not os.path.exists(backup_model_folder):
+        os.makedirs(backup_model_folder)
+
+    if not os.path.exists(cfg.output_surrogates_model_folder):
+        os.makedirs(cfg.output_surrogates_model_folder)
+
+    if not os.path.exists(cfg.output_surrogates_data_folder):
+        os.makedirs(cfg.output_surrogates_data_folder)
+
+    backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
+    ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
+    surrogate_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_train.csv')
+    surrogate_k_indices_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_k_indices.csv')
+
+    # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
+    operators = [SimpleBinaryMutation(), SimpleMutation()]
+    policy = UCBPolicy(operators)
+
+    # define first line if necessary
+    if not os.path.exists(surrogate_output_data):
+        folder, _ = os.path.split(surrogate_output_data)
+
+        if not os.path.exists(folder):
+            os.makedirs(folder)
+
+        with open(surrogate_output_data, 'w') as f:
+            f.write('x;y\n')
+
+
+    # custom start surrogate variable based on problem size
+    p_start = int(0.5 * problem_size)
+
+    # fixed minimal number of real evaluations
+    if p_start < 50:
+        p_start = 50
+
+    print(f'Starting using surrogate after {p_start} reals training')
+
+    # custom ILS for surrogate use
+    algo = ILSMultiSurrogate(initalizer=init, 
+                        evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
+                        operators=operators, 
+                        policy=policy, 
+                        validator=validator,
+                        output_log_surrogates=os.path.join(cfg.output_surrogates_data_folder, 'logs', p_output),
+                        surrogates_file_path=surrogate_output_model,
+                        start_train_surrogates=p_start, # start learning and using surrogate after 1000 real evaluation
+                        solutions_file=surrogate_output_data,
+                        ls_train_surrogates=p_every_ls, # retrain surrogate every `x` iteration
+                        k_division=p_k_division,
+                        k_dynamic=p_k_dynamic,
+                        k_random=p_k_random,
+                        generate_only=p_generate_only,
+                        maximise=True)
+    
+    algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path))
+    algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
+    algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this
+    algo.addCallback(MultiSurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_k_indices_backup_file_path)) # try every LS like this
+
+    bestSol = algo.run(p_ils_iteration, p_ls_iteration)
+
+    # print best solution found
+    print("Found ", bestSol)
+
+    # save model information into .csv file
+    if not os.path.exists(cfg.results_information_folder):
+        os.makedirs(cfg.results_information_folder)
+
+    filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
+
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol._data) + ';' + str(list(bestSol._data).count(1)) + ';' + str(bestSol.fitness)
+    with open(filename_path, 'a') as f:
+        f.write(line_info + '\n')
+    
+    print('Result saved into %s' % filename_path)
+
+
+if __name__ == "__main__":
+    main()

+ 299 - 0
find_best_attributes_surrogate_openML_multi_specific.py

@@ -0,0 +1,299 @@
+# main imports
+import os
+import sys
+import argparse
+import pandas as pd
+import numpy as np
+import logging
+import datetime
+import random
+
+# model imports
+from sklearn.model_selection import train_test_split
+from sklearn.model_selection import GridSearchCV
+from sklearn.linear_model import LogisticRegression
+from sklearn.ensemble import RandomForestClassifier, VotingClassifier
+
+import joblib
+import sklearn
+import sklearn.svm as svm
+from sklearn.utils import shuffle
+from sklearn.metrics import roc_auc_score
+from sklearn.model_selection import cross_val_score
+from sklearn.preprocessing import MinMaxScaler
+
+# modules and config imports
+sys.path.insert(0, '') # trick to enable import of main folder module
+
+import custom_config as cfg
+import models as mdl
+
+from optimization.ILSMultiSpecificSurrogate import ILSMultiSpecificSurrogate
+from macop.solutions.BinarySolution import BinarySolution
+
+from macop.operators.mutators.SimpleMutation import SimpleMutation
+from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
+from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
+from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
+
+from macop.operators.policies.UCBPolicy import UCBPolicy
+from macop.operators.policies.RandomPolicy import RandomPolicy
+
+from macop.callbacks.BasicCheckpoint import BasicCheckpoint
+from macop.callbacks.UCBCheckpoint import UCBCheckpoint
+from optimization.callbacks.SurrogateCheckpoint import SurrogateCheckpoint
+from optimization.callbacks.MultiSurrogateCheckpoint import MultiSurrogateCheckpoint
+from optimization.callbacks.MultiSurrogateSpecificCheckpoint import MultiSurrogateSpecificCheckpoint
+
+from sklearn.ensemble import RandomForestClassifier
+
+# avoid display of warning
+def warn(*args, **kwargs):
+    pass
+
+import warnings
+warnings.filterwarnings("ignore", category=DeprecationWarning)
+warnings.warn = warn
+
+# default validator
+def validator(solution):
+
+    # at least 5 attributes
+    if list(solution._data).count(1) < 2:
+        return False
+
+    return True
+
+def train_model(X_train, y_train):
+
+    #print ('Creating model...')
+    # here use of SVM with grid search CV
+    Cs = [0.001, 0.01, 0.1, 1, 10, 100]
+    gammas = [0.001, 0.01, 0.1,10, 100]
+    param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
+
+    svc = svm.SVC(probability=True, class_weight='balanced')
+    #clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
+    clf = GridSearchCV(svc, param_grid, cv=4, verbose=0, n_jobs=-1)
+
+    clf.fit(X_train, y_train)
+
+    model = clf.best_estimator_
+
+    return model
+
+def loadDataset(filename):
+
+    ########################
+    # 1. Get and prepare data
+    ########################
+    dataset = pd.read_csv(filename, sep=',')
+
+    # change label as common
+    min_label_value = min(dataset.iloc[:, -1])
+    max_label_value = max(dataset.iloc[:, -1])
+
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
+    dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
+
+    X_dataset = dataset.iloc[:, :-1]
+    y_dataset = dataset.iloc[:, -1]
+
+    problem_size = len(X_dataset.columns)
+
+    # min/max normalisation over feature
+    # create a scaler object
+    scaler = MinMaxScaler()
+    # fit and transform the data
+    X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
+
+    # prepare train, validation and test datasets
+    X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
+
+    return X_train, y_train, X_test, y_test, problem_size
+
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
+
+    parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
+    parser.add_argument('--every_ls', type=int, help='train every ls surrogate model', default=50) # default value
+    parser.add_argument('--k_division', type=int, help='number of expected sub surrogate model', default=20)
+    parser.add_argument('--k_dynamic', type=int, help='specify if indices for each sub surrogate model are changed or not for each training', default=0, choices=[0, 1])
+    parser.add_argument('--k_random', type=int, help='specify if split is random or not', default=1, choices=[0, 1])
+    parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
+    parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
+    parser.add_argument('--generate_only', type=int, help='number of iteration for Local Search algorithm', default=0, choices=[0, 1])
+    parser.add_argument('--output', type=str, help='output surrogate model name')
+
+    args = parser.parse_args()
+
+    p_data_file = args.data
+    p_every_ls   = args.every_ls
+    p_k_division = args.k_division
+    p_k_dynamic = bool(args.k_dynamic)
+    p_k_random = bool(args.k_random)
+    p_ils_iteration = args.ils
+    p_ls_iteration  = args.ls
+    p_generate_only = bool(args.generate_only)
+    p_output = args.output
+
+    # load data from file and get problem size
+    X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
+
+    # create `logs` folder if necessary
+    if not os.path.exists(cfg.output_logs_folder):
+        os.makedirs(cfg.output_logs_folder)
+
+    logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG)
+
+    # init solution (`n` attributes)
+    def init():
+        return BinarySolution([], problem_size).random(validator)
+
+    # define evaluate function here (need of data information)
+    def evaluate(solution):
+
+        start = datetime.datetime.now()
+
+        # get indices of filters data to use (filters selection from solution)
+        indices = []
+
+        for index, value in enumerate(solution._data): 
+            if value == 1: 
+                indices.append(index) 
+
+        print(f'Training SVM with {len(indices)} from {len(solution._data)} available features')
+
+        # keep only selected filters from solution
+        x_train_filters = X_train[:, indices]
+        x_test_filters = X_test[ :, indices]
+        
+        # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+        model = train_model(x_train_filters, y_train)
+
+        y_test_model = model.predict(x_test_filters)
+        y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
+        test_roc_auc = roc_auc_score(y_test, y_test_predict)
+
+        end = datetime.datetime.now()
+
+        diff = end - start
+
+        print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
+
+        return test_roc_auc
+
+    def sub_evaluate(solution, index_number, targeted_indices):
+
+        start = datetime.datetime.now()
+
+        # get indices of filters data to use (filters selection from solution)
+        indices = []
+
+        for index, value in enumerate(solution._data): 
+            if value == 1: 
+                indices.append(targeted_indices[index]) 
+
+        print(f'Training sub-model SVM n°{index_number} with {len(indices)} from {len(solution._data)} available features')
+
+        # keep only selected filters from solution
+        x_train_filters = X_train[:, indices]
+        x_test_filters = X_test[ :, indices]
+        
+        # model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
+        model = train_model(x_train_filters, y_train)
+
+        y_test_model = model.predict(x_test_filters)
+        y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
+        test_roc_auc = roc_auc_score(y_test, y_test_predict)
+
+        end = datetime.datetime.now()
+
+        diff = end - start
+
+        print(f"Real sub-evaluation n°{index_number} took: {divmod(diff.days * 86400 + diff.seconds, 60)}, score found: {test_roc_auc}")
+
+        return test_roc_auc
+
+
+
+    # build all output folder and files based on `output` name
+    backup_model_folder = os.path.join(cfg.output_backup_folder, p_output)
+    surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output)
+    surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output)
+
+    if not os.path.exists(backup_model_folder):
+        os.makedirs(backup_model_folder)
+
+    if not os.path.exists(cfg.output_surrogates_model_folder):
+        os.makedirs(cfg.output_surrogates_model_folder)
+
+    if not os.path.exists(cfg.output_surrogates_data_folder):
+        os.makedirs(cfg.output_surrogates_data_folder)
+
+    backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
+    ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
+    surrogate_backup_file_path = os.path.join(backup_model_folder, p_output + '_train.csv')
+    surrogate_k_indices_backup_file_path = os.path.join(backup_model_folder, p_output + '_k_indices.csv')
+    surrogate_population_backup_file_path = os.path.join(backup_model_folder, p_output + '_population.csv')
+
+    # prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
+    operators = [SimpleBinaryMutation(), SimpleMutation()]
+    #policy = UCBPolicy(operators)
+    policy = RandomPolicy(operators)
+
+    # custom start surrogate variable based on problem size
+    p_start = int(problem_size / p_k_division * 2) # 2 \times number of features for each sub-model
+
+    # fixed minimal number of real evaluations
+    if p_start < 50:
+        p_start = 50
+
+    print(f'Starting using surrogate after {p_start} reals training')
+
+    # custom ILS for surrogate use
+    algo = ILSMultiSpecificSurrogate(initalizer=init, 
+                        evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
+                        sub_evaluator=sub_evaluate,
+                        operators=operators, 
+                        policy=policy, 
+                        validator=validator,
+                        output_log_surrogates=os.path.join(cfg.output_surrogates_data_folder, 'logs', p_output),
+                        surrogates_file_path=surrogate_output_model,
+                        start_train_surrogates=p_start, # start learning and using surrogate after 1000 real evaluation
+                        solutions_folder=surrogate_output_data,
+                        ls_train_surrogates=p_every_ls, # retrain surrogate every `x` iteration
+                        k_division=p_k_division,
+                        k_dynamic=p_k_dynamic,
+                        k_random=p_k_random,
+                        generate_only=p_generate_only,
+                        maximise=True)
+    
+    algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path))
+    #algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
+    algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this
+    algo.addCallback(MultiSurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_k_indices_backup_file_path)) # try every LS like this
+    algo.addCallback(MultiSurrogateSpecificCheckpoint(every=p_ls_iteration, filepath=surrogate_population_backup_file_path)) # try every LS like this
+
+    bestSol = algo.run(p_ils_iteration, p_ls_iteration)
+
+    # print best solution found
+    print("Found ", bestSol)
+
+    # save model information into .csv file
+    if not os.path.exists(cfg.results_information_folder):
+        os.makedirs(cfg.results_information_folder)
+
+    filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
+
+    line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol._data) + ';' + str(list(bestSol._data).count(1)) + ';' + str(bestSol.fitness)
+    with open(filename_path, 'a') as f:
+        f.write(line_info + '\n')
+    
+    print('Result saved into %s' % filename_path)
+
+
+if __name__ == "__main__":
+    main()

+ 1 - 1
find_best_filters.py

@@ -161,7 +161,7 @@ def main():
 
     filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_filters_result_filename)
 
-    line_info = p_data_file + ';' + str(ils_iteration) + ';' + str(ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(bestSol.fitness())
+    line_info = p_data_file + ';' + str(ils_iteration) + ';' + str(ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(bestSol.fitness)
     with open(filename_path, 'a') as f:
         f.write(line_info + '\n')
     

+ 589 - 0
optimization/ILSMultiSpecificSurrogate.py

@@ -0,0 +1,589 @@
+"""Iterated Local Search Algorithm implementation using multiple-surrogate (weighted sum surrogate) as fitness approximation
+"""
+
+# main imports
+import os
+import logging
+import joblib
+import time
+import math
+import numpy as np
+import pandas as pd
+import random
+
+# parallel imports
+from joblib import Parallel, delayed
+import multiprocessing
+
+# module imports
+from macop.algorithms.base import Algorithm
+from macop.solutions.discrete import BinarySolution
+
+from .LSSurrogate import LocalSearchSurrogate
+from .utils.SurrogateAnalysis import SurrogateAnalysis
+
+from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
+                                    LassoCV, ElasticNet)
+
+from wsao.sao.problems.nd3dproblem import ND3DProblem
+from wsao.sao.surrogates.walsh import WalshSurrogate
+from wsao.sao.algos.fitter import FitterAlgo
+from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
+
+class ILSMultiSpecificSurrogate(Algorithm):
+    """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using multiple-surrogate where each sub-surrogate learn from specific dataset
+
+
+    Attributes:
+        initalizer: {function} -- basic function strategy to initialize solution
+        evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
+        sub_evaluator: {function} -- sub evaluator function in order to obtained fitness for sub-model
+        operators: {[Operator]} -- list of operator to use when launching algorithm
+        policy: {Policy} -- Policy class implementation strategy to select operators
+        validator: {function} -- basic function to check if solution is valid or not under some constraints
+        maximise: {bool} -- specify kind of optimization problem 
+        currentSolution: {Solution} -- current solution managed for current evaluation
+        bestSolution: {Solution} -- best solution found so far during running algorithm
+        ls_iteration: {int} -- number of evaluation for each local search algorithm
+        surrogates_file_path: {str} -- Surrogates model folder to load (models trained using https://gitlab.com/florianlprt/wsao)
+        output_log_surrogates: {str} -- Log folder for surrogates training model
+        start_train_surrogates: {int} -- number of evaluation expected before start training and use surrogate
+        surrogates: [{Surrogate}] -- Surrogates model instance loaded
+        ls_train_surrogates: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
+        k_division: {int} -- number of expected division for current features problem
+        k_dynamic: {bool} -- specify if indices are changed for each time we train a new surrogate model
+        k_random: {bool} -- random initialization of k_indices for each surrogate features model data
+        generate_only: {bool} -- generate only a specific number of expected real solutions evaluated
+        solutions_folder: {str} -- Path where real evaluated solutions on subset are saved
+        callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
+    """
+    def __init__(self,
+                 initalizer,
+                 evaluator,
+                 sub_evaluator,
+                 operators,
+                 policy,
+                 validator,
+                 surrogates_file_path,
+                 output_log_surrogates,
+                 start_train_surrogates,
+                 ls_train_surrogates,
+                 k_division,
+                 solutions_folder,
+                 k_random=True,
+                 k_dynamic=False,
+                 generate_only=False,
+                 maximise=True,
+                 parent=None):
+
+        # set real evaluator as default
+        super().__init__(initalizer, evaluator, operators, policy,
+                validator, maximise, parent)
+
+        self._n_local_search = 0
+        self._total_n_local_search = 0
+        self._main_evaluator = evaluator
+        self._sub_evaluator = sub_evaluator
+
+        self._surrogates_file_path = surrogates_file_path
+        self._start_train_surrogates = start_train_surrogates
+        self._output_log_surrogates = output_log_surrogates
+
+        self._surrogate_evaluator = None
+        self._surrogate_analyser = None
+
+        self._ls_train_surrogates = ls_train_surrogates
+
+        self._k_division = k_division
+        self._k_dynamic = k_dynamic
+        self._k_random = k_random
+        self._k_indices = None
+        self._surrogates = None
+        self._population = None
+
+        self._generate_only = generate_only
+        self._solutions_folder = solutions_folder
+        
+
+    def init_solutions_files(self):
+        self._solutions_files = []
+
+        if not os.path.exists(self._solutions_folder):
+            os.makedirs(self._solutions_folder)
+
+        # for each sub surrogate, associate its own surrogate file
+        for i in range(len(self._k_indices)):
+            index_str = str(i)
+
+            while len(index_str) < 3:
+                index_str = "0" + index_str
+
+            solutions_path = os.path.join(self._solutions_folder, f'surrogate_data_{index_str}')
+
+            # initialize solutions file if not exist
+            if not os.path.exists(solutions_path):
+                with open(solutions_path, 'w') as f:
+                    f.write('x;y\n')
+
+            self._solutions_files.append(solutions_path)
+
+
+    def define_sub_evaluators(self): 
+        self._sub_evaluators = []
+
+        for i in range(len(self._k_indices)):
+
+            # need to pass as default argument indices
+            current_evaluator = lambda s, number=i, indices=self._k_indices[i]: self._sub_evaluator(s, number, indices)
+            self._sub_evaluators.append(current_evaluator)
+
+
+    def init_population(self):
+
+        self._population = []
+
+        # initialize the population
+        for i in range(len(self._k_indices)):
+            
+            current_solution = self.pop_initializer(i)
+
+            # compute fitness using sub-problem evaluator
+            fitness_score = self._sub_evaluators[i](current_solution)
+            current_solution._score = fitness_score
+            
+            self._population.append(current_solution)
+
+
+    def pop_initializer(self, index):
+        problem_size = len(self._k_indices[index])
+        return BinarySolution([], problem_size).random(self._validator)
+
+
+    def init_k_split_indices(self):
+        """Initialize k_indices for the new training of surrogate
+
+        Returns:
+            k_indices: [description]
+        """
+        a = list(range(self._bestSolution._size))
+        n_elements = int(math.ceil(self._bestSolution._size / self._k_division)) # use of ceil to avoid loss of data
+
+        # TODO : (check) if random is possible or not
+        # if self._k_random:
+        #     random.shuffle(a) # random subset
+
+        splitted_indices = [a[x:x+n_elements] for x in range(0, len(a), n_elements)]
+
+        self._k_division = len(splitted_indices) # update size of k if necessary
+        self._k_indices = splitted_indices
+
+
+    def train_surrogate(self, index, indices):
+        
+        # 1. Data sets preparation (train and test) use now of specific dataset for surrogate
+        
+        # dynamic number of samples based on dataset real evaluations
+        nsamples = None
+        with open(self._solutions_files[index], 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
+        
+        df = pd.read_csv(self._solutions_files[index], sep=';')
+        # learning set and test set
+        current_learn = df.sample(training_samples)
+        current_test = df.drop(current_learn.index)
+
+        problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
+        model = Lasso(alpha=1e-5)
+        surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
+        analysis = FitterAnalysis(logfile=os.path.join(self._output_log_surrogates, f"train_surrogate_{index}.log"), problem=problem)
+        algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
+
+        print(f"Start fitting again the surrogate model n°{index}, using {training_samples} of {nsamples} samples for train dataset")
+        for r in range(10):
+            print(f"Iteration n°{r}: for fitting surrogate n°{index}")
+            algo.run_samples(learn=current_learn, test=current_test, step=10)
+
+        # keep well ordered surrogate into file manager
+        str_index = str(index)
+
+        while len(str_index) < 6:
+            str_index = "0" + str_index
+
+        joblib.dump(algo, os.path.join(self._surrogates_file_path, f'surrogate_{str_index}'))
+
+        return str_index
+        
+
+    def train_surrogates(self):
+        """Retrain if necessary the whole surrogate fitness approximation function
+        """
+        # Following https://gitlab.com/florianlprt/wsao, we re-train the model
+        # ---------------------------------------------------------------------------
+        # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
+        #        model=lasso,alpha=1e-5 \
+        #        surrogate=walsh,order=3 \
+        #        algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
+        #        sample=1000,step=10 \
+        #        analysis=fitter,logfile=out_fit.csv
+        
+        # 1. for each sub space indices, learn new surrogate
+        if not os.path.exists(self._surrogates_file_path):
+            os.makedirs(self._surrogates_file_path)
+
+        num_cores = multiprocessing.cpu_count()
+
+        if not os.path.exists(self._output_log_surrogates):
+            os.makedirs(self._output_log_surrogates)
+
+        Parallel(n_jobs=num_cores)(delayed(self.train_surrogate)(index, indices) for index, indices in enumerate(self._k_indices))
+
+
+    def load_surrogates(self):
+        """Load algorithm with surrogate model and create lambda evaluator function
+        """
+
+        # need to first train surrogate if not exist
+        if not os.path.exists(self._surrogates_file_path):
+            self.train_surrogates()
+
+        self._surrogates = []
+
+        surrogates_path = sorted(os.listdir(self._surrogates_file_path))
+
+        for surrogate_p in surrogates_path:
+            model_path = os.path.join(self._surrogates_file_path, surrogate_p)
+            surrogate_model = joblib.load(model_path)
+
+            self._surrogates.append(surrogate_model)
+
+    
+    def surrogate_evaluator(self, solution):
+        """Compute mean of each surrogate model using targeted indices
+
+        Args:
+            solution: {Solution} -- current solution to evaluate using multi-surrogate evaluation
+
+        Return:
+            mean: {float} -- mean score of surrogate models
+        """
+        scores = []
+        solution_data = np.array(solution._data)
+
+        # for each indices set, get trained surrogate model and made prediction score
+        for i, indices in enumerate(self._k_indices):
+            current_data = solution_data[indices]
+            current_score = self._surrogates[i].surrogate.predict([current_data])[0]
+            scores.append(current_score)
+
+        return sum(scores) / len(scores)
+            
+    def surrogates_coefficient_of_determination(self):
+        """Compute r² for each sub surrogate model
+
+        Return:
+            r_squared_scores: [{float}] -- mean score of r_squred obtained from surrogate models
+        """
+
+        # for each indices set, get r^2 surrogate model and made prediction score
+        num_cores = multiprocessing.cpu_count()
+
+        r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
+
+        return r_squared_scores
+
+    def surrogates_mae(self):
+        """Compute mae for each sub surrogate model
+
+        Return:
+            mae_scores: [{float}] -- mae scores from model
+        """
+
+        # for each indices set, get mae surrogate model and made prediction score
+        num_cores = multiprocessing.cpu_count()
+
+        mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
+
+
+        return mae_scores
+
+    def add_to_surrogate(self, solution, index):
+
+        # save real evaluated solution into specific file for surrogate
+        with open(self._solutions_files[index], 'a') as f:
+
+            line = ""
+
+            for index, e in enumerate(solution._data):
+
+                line += str(e)
+                
+                if index < len(solution._data) - 1:
+                    line += ","
+
+            line += ";"
+            line += str(solution._score)
+
+            f.write(line + "\n")
+
+    def run(self, evaluations, ls_evaluations=100):
+        """
+        Run the iterated local search algorithm using local search (EvE compromise)
+
+        Args:
+            evaluations: {int} -- number of global evaluations for ILS
+            ls_evaluations: {int} -- number of Local search evaluations (default: 100)
+
+        Returns:
+            {Solution} -- best solution found
+        """
+
+        # by default use of mother method to initialize variables
+        super().run(evaluations)
+
+        # initialize current solution
+        self.initRun()
+
+        self.init_k_split_indices()
+
+        # add norm to indentify sub problem data
+        self.init_solutions_files()
+
+        # here we each surrogate sub evaluator
+        self.define_sub_evaluators()
+        self.init_population()
+
+        # enable resuming for ILS
+        self.resume()
+
+        # count number of surrogate obtained and restart using real evaluations done for each surrogate (sub-model)
+        if (self._start_train_surrogates * self._k_division) > self.getGlobalEvaluation():
+
+            # for each sub problem (surrogate)
+            for i in range(self._k_division):
+
+                nsamples = None
+                with open(self._solutions_files[i], 'r') as f:
+                    nsamples = len(f.readlines()) - 1 # avoid header
+
+                if nsamples is None:
+                    nsamples = 0
+
+                # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
+                # using randomly generated solutions (in order to cover seearch space)
+                while self._start_train_surrogates > nsamples:
+
+                    print(f'Real solutions extraction for surrogate n°{i}: {nsamples} of {self._start_train_surrogates}')
+                    
+                    newSolution = self.pop_initializer(i)
+
+                    # evaluate new solution
+                    newSolution.evaluate(self._sub_evaluators[i])
+
+                    # add it to surrogate pool
+                    self.add_to_surrogate(newSolution, i)
+
+                    nsamples += 1
+
+                    # increase number of evaluation
+                    self.increaseEvaluation()
+                
+        # stop this process after generating solution
+        if self._generate_only:
+            return self._bestSolution
+
+        # train surrogate on real evaluated solutions file
+        self.train_surrogates()
+        self.load_surrogates()
+
+        # local search algorithm implementation
+        while not self.stop():
+
+            # set current evaluator based on used or not of surrogate function
+            self._evaluator = self.surrogate_evaluator if self._start_train_surrogates <= self.getGlobalEvaluation() else self._main_evaluator
+
+
+            local_search_list = [] 
+
+            for i in range(self._k_division):
+
+                # use specific initializer for pop_initialiser
+                # specific surrogate evaluator for this local search
+                ls = LocalSearchSurrogate(lambda index=i: self.pop_initializer(index),
+                            lambda s: self._surrogates[i].surrogate.predict([s._data])[0],
+                            self._operators,
+                            self._policy,
+                            self._validator,
+                            self._maximise,
+                            parent=self)
+
+                # add same callbacks
+                for callback in self._callbacks:
+                    ls.addCallback(callback)
+
+                local_search_list.append(ls)
+
+            # parallel run of each local search
+            num_cores = multiprocessing.cpu_count()
+            ls_solutions = Parallel(n_jobs=num_cores)(delayed(ls.run)(ls_evaluations) for ls in local_search_list)
+
+            # create and search solution from local search
+            self._numberOfEvaluations += ls_evaluations * self._k_division
+
+            # for each sub problem, update population
+            for i, sub_problem_solution in enumerate(ls_solutions):
+
+                # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
+                # Update : always add new solution into surrogate pool, not only if solution is better
+                #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
+                if self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                    # if better solution found from local search, retrained the found solution and test again
+                    # without use of surrogate
+                    fitness_score = self._sub_evaluators[i](sub_problem_solution)
+                    # self.increaseEvaluation() # dot not add evaluation
+
+                    sub_problem_solution._score = fitness_score
+
+                    # if solution is really better after real evaluation, then we replace (depending of problem nature (minimizing / maximizing))
+                    if self._maximise:
+                        if sub_problem_solution.fitness > self._population[i].fitness:
+                            self._population[i] = sub_problem_solution
+                    else:
+                        if sub_problem_solution.fitness < self._population[i].fitness:
+                            self._population[i] = sub_problem_solution
+
+                    self.add_to_surrogate(sub_problem_solution, i)
+            
+            # main best solution update
+            if self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # need to create virtual solution from current population
+                obtained_solution_data = np.array([ s._data for s in self._population ], dtype='object').flatten().tolist()
+
+                if list(obtained_solution_data) == list(self._bestSolution._data):
+                    print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
+                else:
+                    print(f'-- Updates found into population from sub-model surrogates LS')
+                    # init random solution 
+                    current_solution = self._initializer()
+                    current_solution.data = obtained_solution_data
+
+                    fitness_score = self._main_evaluator(current_solution)
+
+                    # new computed solution score
+                    current_solution._score = fitness_score
+
+                    # if solution is really better after real evaluation, then we replace
+                    if self.isBetter(current_solution):
+                        self._bestSolution = current_solution
+
+                    print(f'-- Current main solution from population is {current_solution._score} vs. {self._bestSolution._score}')
+                    self.progress()
+
+            # main best solution update
+            if self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # need to create virtual solution from current population
+                obtained_solution_data = np.array([ s._data for s in ls_solutions ], dtype='object').flatten().tolist()
+
+                if list(obtained_solution_data) == list(self._bestSolution._data):
+                    print(f'-- No updates found from sub-model surrogates LS (best solution score: {self._bestSolution._score}')
+                else:
+                    print(f'-- Updates found from sub-model surrogates LS')
+                    # init random solution 
+                    current_solution = self._initializer()
+                    current_solution.data = obtained_solution_data
+
+                    fitness_score = self._main_evaluator(current_solution)
+
+                    # new computed solution score
+                    current_solution._score = fitness_score
+
+                    # if solution is really better after real evaluation, then we replace
+                    if self.isBetter(current_solution):
+
+                        print(f'Exploration solution obtained from LS surrogates enable improvment of main solution')
+                        self._bestSolution = current_solution
+
+                        print(f'Exploration solution obtained from LS surrogates enable improvment of main solution')
+                        # also update the whole population as restarting process if main solution is better
+                        for i, sub_problem_solution in enumerate(ls_solutions):
+
+                            # already evaluated sub solution
+                            self._population[i] = sub_problem_solution
+
+                    print(f'-- Current main solution obtained from `LS solutions` is {current_solution._score} vs. {self._bestSolution._score}')
+                    logging.info(f'-- Current main solution obtained from `LS solutions` is {current_solution._score} vs. {self._bestSolution._score}')
+                    self.progress()
+    
+            print(f'State of current population for surrogates ({len(self._population)} members)')
+            for i, s in enumerate(self._population):
+                print(f'Population[{i}]: best solution fitness is {s.fitness}')
+
+            # check using specific dynamic criteria based on r^2
+            r_squared_scores = self.surrogates_coefficient_of_determination()
+            r_squared = sum(r_squared_scores) / len(r_squared_scores)
+
+            mae_scores = self.surrogates_mae()
+            mae_score = sum(mae_scores) / len(mae_scores)
+
+            r_squared_value = 0 if r_squared < 0 else r_squared
+
+            training_surrogate_every = int(r_squared_value * self._ls_train_surrogates) # use of absolute value for r²
+
+            # avoid issue when lauching every each local search
+            if training_surrogate_every <= 0:
+                training_surrogate_every = 1
+                
+            logging.info(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
+            print(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
+            
+            # check if necessary or not to train again surrogate
+            if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # reinitialization of k_indices for the new training
+                # TODO : remove this part temporally
+                # if self._k_dynamic:
+                #     print(f"Reinitialization of k_indices using `k={self._k_division} `for the new training")
+                #     self.init_k_split_indices()
+
+                # train again surrogate on real evaluated solutions file
+                start_training = time.time()
+                self.train_surrogates()
+                training_time = time.time() - start_training
+
+                self._surrogate_analyser = SurrogateAnalysis(training_time, training_surrogate_every, r_squared_scores, r_squared, mae_scores, mae_score, self.getGlobalMaxEvaluation(), self._total_n_local_search)
+
+                # reload new surrogate function
+                self.load_surrogates()
+
+                # reinitialize number of local search
+                self._n_local_search = 0
+
+            # increase number of local search done
+            self._n_local_search += 1
+            self._total_n_local_search += 1
+
+            self.information()
+
+        logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
+
+        self.end()
+        return self._bestSolution
+
+    def addCallback(self, callback):
+        """Add new callback to algorithm specifying usefull parameters
+
+        Args:
+            callback: {Callback} -- specific Callback instance
+        """
+        # specify current main algorithm reference
+        if self.getParent() is not None:
+            callback.setAlgo(self.getParent())
+        else:
+            callback.setAlgo(self)
+
+        # set as new
+        self._callbacks.append(callback)

+ 454 - 0
optimization/ILSMultiSurrogate.py

@@ -0,0 +1,454 @@
+"""Iterated Local Search Algorithm implementation using multiple-surrogate (weighted sum surrogate) as fitness approximation
+"""
+
+# main imports
+import os
+import logging
+import joblib
+import time
+import math
+import numpy as np
+import pandas as pd
+import random
+
+# parallel imports
+from joblib import Parallel, delayed
+import multiprocessing
+
+# module imports
+from macop.algorithms.base import Algorithm
+from .LSSurrogate import LocalSearchSurrogate
+from .utils.SurrogateAnalysis import SurrogateAnalysis
+
+from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
+                                    LassoCV, ElasticNet)
+
+from wsao.sao.problems.nd3dproblem import ND3DProblem
+from wsao.sao.surrogates.walsh import WalshSurrogate
+from wsao.sao.algos.fitter import FitterAlgo
+from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
+
+class ILSMultiSurrogate(Algorithm):
+    """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using multiple-surrogate
+
+
+    Attributes:
+        initalizer: {function} -- basic function strategy to initialize solution
+        evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
+        operators: {[Operator]} -- list of operator to use when launching algorithm
+        policy: {Policy} -- Policy class implementation strategy to select operators
+        validator: {function} -- basic function to check if solution is valid or not under some constraints
+        maximise: {bool} -- specify kind of optimization problem 
+        currentSolution: {Solution} -- current solution managed for current evaluation
+        bestSolution: {Solution} -- best solution found so far during running algorithm
+        ls_iteration: {int} -- number of evaluation for each local search algorithm
+        surrogates_file_path: {str} -- Surrogates model folder to load (models trained using https://gitlab.com/florianlprt/wsao)
+        output_log_surrogates: {str} -- Log folder for surrogates training model
+        start_train_surrogates: {int} -- number of evaluation expected before start training and use surrogate
+        surrogates: [{Surrogate}] -- Surrogates model instance loaded
+        ls_train_surrogates: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
+        k_division: {int} -- number of expected division for current features problem
+        k_dynamic: {bool} -- specify if indices are changed for each time we train a new surrogate model
+        k_random: {bool} -- random initialization of k_indices for each surrogate features model data
+        generate_only: {bool} -- generate only a specific number of expected real solutions evaluated
+        solutions_file: {str} -- Path where real evaluated solutions are saved in order to train surrogate again
+        callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
+    """
+    def __init__(self,
+                 initalizer,
+                 evaluator,
+                 operators,
+                 policy,
+                 validator,
+                 surrogates_file_path,
+                 output_log_surrogates,
+                 start_train_surrogates,
+                 ls_train_surrogates,
+                 k_division,
+                 solutions_file,
+                 k_random=True,
+                 k_dynamic=False,
+                 generate_only=False,
+                 maximise=True,
+                 parent=None):
+
+        # set real evaluator as default
+        super().__init__(initalizer, evaluator, operators, policy,
+                validator, maximise, parent)
+
+        self._n_local_search = 0
+        self._total_n_local_search = 0
+        self._main_evaluator = evaluator
+
+        self._surrogates_file_path = surrogates_file_path
+        self._start_train_surrogates = start_train_surrogates
+        self._output_log_surrogates = output_log_surrogates
+
+        self._surrogate_evaluator = None
+        self._surrogate_analyser = None
+
+        self._ls_train_surrogates = ls_train_surrogates
+        self._solutions_file = solutions_file
+
+        self._k_division = k_division
+        self._k_dynamic = k_dynamic
+        self._k_random = k_random
+        self._k_indices = None
+        self._surrogates = None
+
+        self._generate_only = generate_only
+
+    def init_k_split_indices(self):
+        """Initialize k_indices for the new training of surrogate
+
+        Returns:
+            k_indices: [description]
+        """
+        a = list(range(self._bestSolution._size))
+        n_elements = int(math.ceil(self._bestSolution._size / self._k_division)) # use of ceil to avoid loss of data
+
+        if self._k_random:
+            random.shuffle(a) # random subset
+
+        splitted_indices = [a[x:x+n_elements] for x in range(0, len(a), n_elements)]
+
+        return splitted_indices
+
+
+    def train_surrogate(self, index, learn, test, indices):
+
+        current_learn = learn.copy()
+        current_learn.x = current_learn.x.apply(lambda x: ','.join(list(map(str, np.fromstring(x, dtype=int, sep=',')[indices]))))
+
+        current_test = test.copy()
+        current_test.x = current_test.x.apply(lambda x: ','.join(list(map(str, np.fromstring(x, dtype=int, sep=',')[indices]))))
+
+        problem = ND3DProblem(size=len(indices)) # problem size based on best solution size (need to improve...)
+        model = Lasso(alpha=1e-5)
+        surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
+        analysis = FitterAnalysis(logfile=os.path.join(self._output_log_surrogates, f"train_surrogate_{index}.log"), problem=problem)
+        algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
+
+        print(f"Start fitting again the surrogate model n°{index}")
+        for r in range(10):
+            print(f"Iteration n°{r}: for fitting surrogate n°{index}")
+            algo.run_samples(learn=current_learn, test=current_test, step=10)
+
+        # keep well ordered surrogate into file manager
+        str_index = str(index)
+
+        while len(str_index) < 6:
+            str_index = "0" + str_index
+
+        joblib.dump(algo, os.path.join(self._surrogates_file_path, f'surrogate_{str_index}'))
+
+        return str_index
+        
+
+    def train_surrogates(self):
+        """Retrain if necessary the whole surrogate fitness approximation function
+        """
+        # Following https://gitlab.com/florianlprt/wsao, we re-train the model
+        # ---------------------------------------------------------------------------
+        # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
+        #        model=lasso,alpha=1e-5 \
+        #        surrogate=walsh,order=3 \
+        #        algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
+        #        sample=1000,step=10 \
+        #        analysis=fitter,logfile=out_fit.csv
+
+
+        # 1. Data sets preparation (train and test)
+        
+        # dynamic number of samples based on dataset real evaluations
+        nsamples = None
+        with open(self._solutions_file, 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
+        
+        df = pd.read_csv(self._solutions_file, sep=';')
+        # learning set and test set
+        learn = df.sample(training_samples)
+        test = df.drop(learn.index)
+
+        print(f'Training all surrogate models using {training_samples} of {nsamples} samples for train dataset')
+        
+        # 2. for each sub space indices, learn new surrogate
+        if not os.path.exists(self._surrogates_file_path):
+            os.makedirs(self._surrogates_file_path)
+
+        num_cores = multiprocessing.cpu_count()
+
+        if not os.path.exists(self._output_log_surrogates):
+            os.makedirs(self._output_log_surrogates)
+
+        Parallel(n_jobs=num_cores)(delayed(self.train_surrogate)(index, learn, test, indices) for index, indices in enumerate(self._k_indices))
+
+
+    def load_surrogates(self):
+        """Load algorithm with surrogate model and create lambda evaluator function
+        """
+
+        # need to first train surrogate if not exist
+        if not os.path.exists(self._surrogates_file_path):
+            self.train_surrogates()
+
+        self._surrogates = []
+
+        surrogates_path = sorted(os.listdir(self._surrogates_file_path))
+
+        for surrogate_p in surrogates_path:
+            model_path = os.path.join(self._surrogates_file_path, surrogate_p)
+            surrogate_model = joblib.load(model_path)
+
+            self._surrogates.append(surrogate_model)
+
+    
+    def surrogate_evaluator(self, solution):
+        """Compute mean of each surrogate model using targeted indices
+
+        Args:
+            solution: {Solution} -- current solution to evaluate using multi-surrogate evaluation
+
+        Return:
+            mean: {float} -- mean score of surrogate models
+        """
+        scores = []
+        solution_data = np.array(solution._data)
+
+        # for each indices set, get trained surrogate model and made prediction score
+        for i, indices in enumerate(self._k_indices):
+            current_data = solution_data[indices]
+            current_score = self._surrogates[i].surrogate.predict([current_data])[0]
+            scores.append(current_score)
+
+        return sum(scores) / len(scores)
+            
+    def surrogates_coefficient_of_determination(self):
+        """Compute r² for each sub surrogate model
+
+        Return:
+            r_squared_scores: [{float}] -- mean score of r_squred obtained from surrogate models
+        """
+
+        # for each indices set, get r^2 surrogate model and made prediction score
+
+        num_cores = multiprocessing.cpu_count()
+
+        r_squared_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.coefficient_of_determination)(s_model.surrogate) for s_model in self._surrogates)
+
+        # for i, _ in enumerate(self._k_indices):
+        #     r_squared = self._surrogates[i].analysis.coefficient_of_determination(self._surrogates[i].surrogate)
+        #     r_squared_scores.append(r_squared)
+
+        #print(r_squared_scores)
+
+        return r_squared_scores
+
+    def surrogates_mae(self):
+        """Compute mae for each sub surrogate model
+
+        Return:
+            mae_scores: [{float}] -- mae scores from model
+        """
+
+        # for each indices set, get r^2 surrogate model and made prediction score
+
+        num_cores = multiprocessing.cpu_count()
+
+        mae_scores = Parallel(n_jobs=num_cores)(delayed(s_model.analysis.mae)(s_model.surrogate) for s_model in self._surrogates)
+
+        # for i, _ in enumerate(self._k_indices):
+        #     r_squared = self._surrogates[i].analysis.coefficient_of_determination(self._surrogates[i].surrogate)
+        #     r_squared_scores.append(r_squared)
+
+        #print(mae_scores)
+
+        return mae_scores
+
+    def add_to_surrogate(self, solution):
+
+        # save real evaluated solution into specific file for surrogate
+        with open(self._solutions_file, 'a') as f:
+
+            line = ""
+
+            for index, e in enumerate(solution._data):
+
+                line += str(e)
+                
+                if index < len(solution._data) - 1:
+                    line += ","
+
+            line += ";"
+            line += str(solution._score)
+
+            f.write(line + "\n")
+
+    def run(self, evaluations, ls_evaluations=100):
+        """
+        Run the iterated local search algorithm using local search (EvE compromise)
+
+        Args:
+            evaluations: {int} -- number of global evaluations for ILS
+            ls_evaluations: {int} -- number of Local search evaluations (default: 100)
+
+        Returns:
+            {Solution} -- best solution found
+        """
+
+        # by default use of mother method to initialize variables
+        super().run(evaluations)
+
+        # initialize current solution
+        self.initRun()
+
+        # based on best solution found, initialize k pool indices
+        if self._k_indices == None:
+            self._k_indices = self.init_k_split_indices()
+
+        # enable resuming for ILS
+        self.resume()
+
+        # count number of surrogate obtained and restart using real evaluations done
+        nsamples = None
+        with open(self._solutions_file, 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        if self.getGlobalEvaluation() < nsamples:
+            print(f'Restart using {nsamples} of {self._start_train_surrogates} real evaluations obtained')
+            self._numberOfEvaluations = nsamples
+
+        if self._start_train_surrogates > self.getGlobalEvaluation():
+        
+            # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
+            # using randomly generated solutions (in order to cover seearch space)
+            while self._start_train_surrogates > self.getGlobalEvaluation():
+
+                print(f'Real solutions extraction {self.getGlobalEvaluation()} of {self._start_train_surrogates}')
+                
+                newSolution = self._initializer()
+
+                # evaluate new solution
+                newSolution.evaluate(self._evaluator)
+
+                # add it to surrogate pool
+                self.add_to_surrogate(newSolution)
+
+                self.increaseEvaluation()
+
+        # stop this process after generating solution
+        if self._generate_only:
+            return self._bestSolution
+
+        # train surrogate on real evaluated solutions file
+        self.train_surrogates()
+        self.load_surrogates()
+
+        # local search algorithm implementation
+        while not self.stop():
+
+            # set current evaluator based on used or not of surrogate function
+            self._evaluator = self.surrogate_evaluator if self._start_train_surrogates <= self.getGlobalEvaluation() else self._main_evaluator
+
+            # create new local search instance
+            # passing global evaluation param from ILS
+            ls = LocalSearchSurrogate(self._initializer,
+                         self._evaluator,
+                         self._operators,
+                         self._policy,
+                         self._validator,
+                         self._maximise,
+                         parent=self)
+
+            # add same callbacks
+            for callback in self._callbacks:
+                ls.addCallback(callback)
+
+            # create and search solution from local search
+            newSolution = ls.run(ls_evaluations)
+
+            # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
+            # Update : always add new solution into surrogate pool, not only if solution is better
+            #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
+            if self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # if better solution found from local search, retrained the found solution and test again
+                # without use of surrogate
+                fitness_score = self._main_evaluator(newSolution)
+                # self.increaseEvaluation() # dot not add evaluation
+
+                newSolution._score = fitness_score
+
+                # if solution is really better after real evaluation, then we replace
+                if self.isBetter(newSolution):
+                    self._bestSolution = newSolution
+
+                self.add_to_surrogate(newSolution)
+
+                self.progress()
+
+            # check using specific dynamic criteria based on r^2
+            r_squared_scores = self.surrogates_coefficient_of_determination()
+            r_squared = sum(r_squared_scores) / len(r_squared_scores)
+
+            mae_scores = self.surrogates_mae()
+            mae_score = sum(mae_scores) / len(mae_scores)
+
+            r_squared_value = 0 if r_squared < 0 else r_squared
+
+            training_surrogate_every = int(r_squared_value * self._ls_train_surrogates) # use of absolute value for r²
+
+            # avoid issue when lauching every each local search
+            if training_surrogate_every <= 0:
+                training_surrogate_every = 1
+                
+            print(f"=> R² of surrogate is of {r_squared} | MAE is of {mae_score} -- [Retraining model after {self._n_local_search % training_surrogate_every} of {training_surrogate_every} LS]")
+
+            # check if necessary or not to train again surrogate
+            if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogates <= self.getGlobalEvaluation():
+
+                # reinitialization of k_indices for the new training
+                if self._k_dynamic:
+                    print(f"Reinitialization of k_indices using `k={self._k_division} `for the new training")
+                    self.init_k_split_indices()
+
+                # train again surrogate on real evaluated solutions file
+                start_training = time.time()
+                self.train_surrogates()
+                training_time = time.time() - start_training
+
+                self._surrogate_analyser = SurrogateAnalysis(training_time, training_surrogate_every, r_squared_scores, r_squared, mae_scores, mae_score, self.getGlobalMaxEvaluation(), self._total_n_local_search)
+
+                # reload new surrogate function
+                self.load_surrogates()
+
+                # reinitialize number of local search
+                self._n_local_search = 0
+
+            # increase number of local search done
+            self._n_local_search += 1
+            self._total_n_local_search += 1
+
+            self.information()
+
+        logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
+
+        self.end()
+        return self._bestSolution
+
+    def addCallback(self, callback):
+        """Add new callback to algorithm specifying usefull parameters
+
+        Args:
+            callback: {Callback} -- specific Callback instance
+        """
+        # specify current main algorithm reference
+        if self.getParent() is not None:
+            callback.setAlgo(self.getParent())
+        else:
+            callback.setAlgo(self)
+
+        # set as new
+        self._callbacks.append(callback)

+ 348 - 0
optimization/ILSPopSurrogate.py

@@ -0,0 +1,348 @@
+"""Iterated Local Search Algorithm implementation using surrogate as fitness approximation
+"""
+
+# main imports
+import os
+import logging
+import joblib
+import time
+
+# module imports
+from macop.algorithms.base import Algorithm
+from macop.evaluators.base import Evaluator
+from macop.operators.base import KindOperator
+from macop.policies.reinforcement import UCBPolicy
+
+from macop.callbacks.policies import UCBCheckpoint
+
+from .LSSurrogate import LocalSearchSurrogate
+from .utils.SurrogateAnalysis import SurrogateAnalysisMono
+
+from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
+                                    LassoCV, ElasticNet)
+
+from wsao.sao.problems.nd3dproblem import ND3DProblem
+from wsao.sao.surrogates.walsh import WalshSurrogate
+from wsao.sao.algos.fitter import FitterAlgo
+from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
+
+
+class LSSurrogateEvaluator(Evaluator):
+
+    # use of surrogate in order to evaluate solution
+    def compute(self, solution):
+        return self._data['surrogate'].surrogate.predict([solution.data])[0]
+        
+
+class ILSPopSurrogate(Algorithm):
+    """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using surrogate
+
+
+    Attributes:
+        initalizer: {function} -- basic function strategy to initialize solution
+        evaluator: {function} -- basic function in order to obtained fitness (mono or multiple objectives)
+        operators: {[Operator]} -- list of operator to use when launching algorithm
+        policy: {Policy} -- Policy class implementation strategy to select operators
+        validator: {function} -- basic function to check if solution is valid or not under some constraints
+        maximise: {bool} -- specify kind of optimization problem 
+        currentSolution: {Solution} -- current solution managed for current evaluation
+        bestSolution: {Solution} -- best solution found so far during running algorithm
+        ls_iteration: {int} -- number of evaluation for each local search algorithm
+        population_size: {int} -- size of the population to manage
+        surrogate_file: {str} -- Surrogate model file to load (model trained using https://gitlab.com/florianlprt/wsao)
+        start_train_surrogate: {int} -- number of evaluation expected before start training and use surrogate
+        surrogate: {Surrogate} -- Surrogate model instance loaded
+        ls_train_surrogate: {int} -- Specify if we need to retrain our surrogate model (every Local Search)
+        solutions_file: {str} -- Path where real evaluated solutions are saved in order to train surrogate again
+        callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
+    """
+    def __init__(self,
+                 initalizer,
+                 evaluator,
+                 operators,
+                 policy,
+                 validator,
+                 population_size,
+                 surrogate_file_path,
+                 start_train_surrogate,
+                 ls_train_surrogate,
+                 walsh_order,
+                 inter_policy_ls_file,
+                 solutions_file,
+                 maximise=True,
+                 parent=None):
+
+        # set real evaluator as default
+        super().__init__(initalizer, evaluator, operators, policy,
+                validator, maximise, parent)
+
+        self._n_local_search = 0
+        self._main_evaluator = evaluator
+
+        self._surrogate_file_path = surrogate_file_path
+        self._start_train_surrogate = start_train_surrogate
+
+        self._surrogate_evaluator = None
+        self._surrogate_analyser = None
+
+        self._ls_train_surrogate = ls_train_surrogate
+        self._solutions_file = solutions_file
+
+        self._walsh_order = walsh_order
+        self._inter_policy_ls_file = inter_policy_ls_file
+
+        # default population values
+        self.population_size = population_size
+        self.population = []
+
+        for _ in range(self.population_size):
+            self.population.append(None)
+
+    def train_surrogate(self):
+        """Retrain if necessary the whole surrogate fitness approximation function
+        """
+        # Following https://gitlab.com/florianlprt/wsao, we re-train the model
+        # ---------------------------------------------------------------------------
+        # cli_restart.py problem=nd3d,size=30,filename="data/statistics_extended_svdn" \
+        #        model=lasso,alpha=1e-5 \
+        #        surrogate=walsh,order=3 \
+        #        algo=fitter,algo_restarts=10,samplefile=stats_extended.csv \
+        #        sample=1000,step=10 \
+        #        analysis=fitter,logfile=out_fit.csv
+
+        problem = ND3DProblem(size=len(self._bestSolution.data)) # problem size based on best solution size (need to improve...)
+        model = Lasso(alpha=1e-5)
+        surrogate = WalshSurrogate(order=self._walsh_order, size=problem.size, model=model)
+        analysis = FitterAnalysis(logfile="train_surrogate.log", problem=problem)
+        algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
+
+        # dynamic number of samples based on dataset real evaluations
+        nsamples = None
+        with open(self._solutions_file, 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
+        
+        print("Start fitting again the surrogate model")
+        print(f'Using {training_samples} of {nsamples} samples for train dataset')
+        for r in range(10):
+            print(f"Iteration n°{r}: for fitting surrogate")
+            algo.run(samplefile=self._solutions_file, sample=training_samples, step=10)
+
+        joblib.dump(algo, self._surrogate_file_path)
+
+
+    def load_surrogate(self):
+        """Load algorithm with surrogate model and create lambda evaluator function
+        """
+
+        # need to first train surrogate if not exist
+        if not os.path.exists(self._surrogate_file_path):
+            self.train_surrogate()
+
+        self._surrogate = joblib.load(self._surrogate_file_path)
+
+        # update evaluator function
+        self._surrogate_evaluator = LSSurrogateEvaluator(data={'surrogate': self._surrogate})
+
+    def add_to_surrogate(self, solution):
+
+        # save real evaluated solution into specific file for surrogate
+        with open(self._solutions_file, 'a') as f:
+
+            line = ""
+
+            for index, e in enumerate(solution._data):
+
+                line += str(e)
+                
+                if index < len(solution._data) - 1:
+                    line += ","
+
+            line += ";"
+            line += str(solution._score)
+
+            f.write(line + "\n")
+
+    def initRun(self):
+
+        fitness_scores = []
+        print('Initialisation of @population')
+        for i in range(len(self.population)):
+
+            print(f'  - solution [{(i+1)}] of {len(self.population)}')
+            if self.population[i] is None:
+                solution = self.initialiser()
+                solution.evaluate(self.evaluator)
+
+                self.population[i] = solution
+                self.add_to_surrogate(solution)
+
+            self.increaseEvaluation()
+
+            fitness_scores.append(self.population[i].fitness)
+
+        print('Best solution @initialisation')
+        self._bestSolution = self.population[fitness_scores.index(max(fitness_scores))]
+
+
+    def run(self, evaluations, ls_evaluations=100):
+        """
+        Run the iterated local search algorithm using local search (EvE compromise)
+
+        Args:
+            evaluations: {int} -- number of global evaluations for ILS
+            ls_evaluations: {int} -- number of Local search evaluations (default: 100)
+
+        Returns:
+            {Solution} -- best solution found
+        """
+
+        # by default use of mother method to initialize variables
+        super().run(evaluations)
+
+        # enable resuming for ILS
+        self.resume()
+
+        # initialize current solution
+        self.initRun()
+
+        # count number of surrogate obtained and restart using real evaluations done
+        nsamples = None
+        with open(self._solutions_file, 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        if self.getGlobalEvaluation() < nsamples:
+            print(f'Restart using {nsamples} of {self._start_train_surrogate} real evaluations obtained')
+            self._numberOfEvaluations = nsamples
+
+        if self._start_train_surrogate > self.getGlobalEvaluation():
+        
+            # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
+            # using randomly generated solutions (in order to cover seearch space)
+            while self._start_train_surrogate > self.getGlobalEvaluation():
+                
+                newSolution = self.initialiser()
+
+                # evaluate new solution
+                newSolution.evaluate(self.evaluator)
+
+                # add it to surrogate pool
+                self.add_to_surrogate(newSolution)
+
+                self.increaseEvaluation()
+
+        # train surrogate on real evaluated solutions file
+        self.train_surrogate()
+        self.load_surrogate()
+
+        # local search algorithm implementation
+        while not self.stop():
+
+            # set current evaluator based on used or not of surrogate function
+            self.evaluator = self._surrogate_evaluator if self._start_train_surrogate <= self.getGlobalEvaluation() else self._main_evaluator
+
+            for i in range(len(self.population)):
+
+                # pass only Mutators operators for local search
+                selected_operators = [ op for op in self._operators if op._kind == KindOperator.MUTATOR ]
+
+                ls_policy = UCBPolicy(selected_operators, C=100, exp_rate=0.1)
+                # create new local search instance
+                # passing global evaluation param from ILS
+                ls = LocalSearchSurrogate(self.initialiser,
+                            self.evaluator,
+                            selected_operators,
+                            ls_policy,
+                            self.validator,
+                            self._maximise,
+                            parent=None,
+                            verbose=False)
+
+                ls.addCallback(UCBCheckpoint(every=1, filepath=self._inter_policy_ls_file))
+
+                # create current new solution using policy and custom algorithm init
+                ls._currentSolution = self.policy.apply(self.population[i])
+                ls.result = ls._currentSolution
+
+                # add same callbacks
+                #for callback in self._callbacks:
+                #    ls.addCallback(callback)
+
+                # create and search solution from local search
+                newSolution = ls.run(ls_evaluations)
+
+                # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
+                # Update : always add new solution into surrogate pool, not only if solution is better
+                #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
+                if self._start_train_surrogate <= self.getGlobalEvaluation():
+
+                    # if better solution found from local search, retrained the found solution and test again
+                    # without use of surrogate
+                    fitness_score = self._main_evaluator.compute(newSolution)
+                    # self.increaseEvaluation() # dot not add evaluation
+
+                    newSolution.fitness = fitness_score
+
+                    # if solution is really better after real evaluation, then we replace
+                    if self.isBetter(newSolution):
+                        self.result = newSolution
+
+                    # update population
+                    if self.population[i].fitness < newSolution.fitness:
+                        self.population[i] = newSolution
+
+                    self.add_to_surrogate(newSolution)
+
+                    self.progress()
+
+                print(f'Best solution found so far: {self.result.fitness}')
+
+                # check using specific dynamic criteria based on r^2
+                r_squared = self._surrogate.analysis.coefficient_of_determination(self._surrogate.surrogate)
+                mae = self._surrogate.analysis.mae(self._surrogate.surrogate)
+                training_surrogate_every = int(r_squared * self._ls_train_surrogate)
+                print(f"=> R^2 of surrogate is of {r_squared}. Retraining model every {training_surrogate_every} LS")
+                print(f"=> MAE of surrogate is of {mae}. Retraining model every {training_surrogate_every} LS")
+
+                # avoid issue when lauching every each local search
+                if training_surrogate_every <= 0:
+                    training_surrogate_every = 1
+
+                # check if necessary or not to train again surrogate
+                if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogate <= self.getGlobalEvaluation():
+
+                    # train again surrogate on real evaluated solutions file
+                    start_training = time.time()
+                    self.train_surrogate()
+                    training_time = time.time() - start_training
+
+                    self._surrogate_analyser = SurrogateAnalysisMono(training_time, training_surrogate_every, r_squared, mae, self.getGlobalMaxEvaluation(), self._n_local_search)
+
+                    # reload new surrogate function
+                    self.load_surrogate()
+
+                # increase number of local search done
+                self._n_local_search += 1
+
+                self.information()
+
+        logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
+
+        self.end()
+        return self._bestSolution
+
+    def addCallback(self, callback):
+        """Add new callback to algorithm specifying usefull parameters
+
+        Args:
+            callback: {Callback} -- specific Callback instance
+        """
+        # specify current main algorithm reference
+        if self.getParent() is not None:
+            callback.setAlgo(self.getParent())
+        else:
+            callback.setAlgo(self)
+
+        # set as new
+        self._callbacks.append(callback)

+ 96 - 64
optimization/ILSSurrogate.py

@@ -5,9 +5,10 @@
 import os
 import logging
 import joblib
+import time
 
 # module imports
-from macop.algorithms.Algorithm import Algorithm
+from macop.algorithms.base import Algorithm
 from .LSSurrogate import LocalSearchSurrogate
 
 from sklearn.linear_model import (LinearRegression, Lasso, Lars, LassoLars,
@@ -18,6 +19,7 @@ from wsao.sao.surrogates.walsh import WalshSurrogate
 from wsao.sao.algos.fitter import FitterAlgo
 from wsao.sao.utils.analysis import SamplerAnalysis, FitterAnalysis, OptimizerAnalysis
 
+
 class ILSSurrogate(Algorithm):
     """Iterated Local Search used to avoid local optima and increave EvE (Exploration vs Exploitation) compromise using surrogate
 
@@ -40,34 +42,36 @@ class ILSSurrogate(Algorithm):
         callbacks: {[Callback]} -- list of Callback class implementation to do some instructions every number of evaluations and `load` when initializing algorithm
     """
     def __init__(self,
-                 _initalizer,
-                 _evaluator,
-                 _operators,
-                 _policy,
-                 _validator,
-                 _surrogate_file_path,
-                 _start_train_surrogate,
-                 _ls_train_surrogate,
-                 _solutions_file,
-                 _maximise=True,
-                 _parent=None):
+                 initalizer,
+                 evaluator,
+                 operators,
+                 policy,
+                 validator,
+                 surrogate_file_path,
+                 start_train_surrogate,
+                 ls_train_surrogate,
+                 solutions_file,
+                 maximise=True,
+                 parent=None):
 
         # set real evaluator as default
-        super().__init__(_initalizer, _evaluator, _operators, _policy,
-                _validator, _maximise, _parent)
+        super().__init__(initalizer, evaluator, operators, policy,
+                validator, maximise, parent)
 
-        self.n_local_search = 0
+        self._n_local_search = 0
+        self._main_evaluator = evaluator
 
-        self.surrogate_file_path = _surrogate_file_path
-        self.start_train_surrogate = _start_train_surrogate
+        self._surrogate_file_path = surrogate_file_path
+        self._start_train_surrogate = start_train_surrogate
 
-        self.surrogate_evaluator = None
+        self._surrogate_evaluator = None
+        self._surrogate_analyser = None
 
-        self.ls_train_surrogate = _ls_train_surrogate
-        self.solutions_file = _solutions_file
+        self._ls_train_surrogate = ls_train_surrogate
+        self._solutions_file = solutions_file
 
     def train_surrogate(self):
-        """etrain if necessary the whole surrogate fitness approximation function
+        """Retrain if necessary the whole surrogate fitness approximation function
         """
         # Following https://gitlab.com/florianlprt/wsao, we re-train the model
         # ---------------------------------------------------------------------------
@@ -78,19 +82,26 @@ class ILSSurrogate(Algorithm):
         #        sample=1000,step=10 \
         #        analysis=fitter,logfile=out_fit.csv
 
-        problem = ND3DProblem(size=len(self.bestSolution.data)) # problem size based on best solution size (need to improve...)
+        problem = ND3DProblem(size=len(self._bestSolution._data)) # problem size based on best solution size (need to improve...)
         model = Lasso(alpha=1e-5)
-        surrogate = WalshSurrogate(order=3, size=problem.size, model=model)
+        surrogate = WalshSurrogate(order=2, size=problem.size, model=model)
         analysis = FitterAnalysis(logfile="train_surrogate.log", problem=problem)
-
         algo = FitterAlgo(problem=problem, surrogate=surrogate, analysis=analysis, seed=problem.seed)
 
+        # dynamic number of samples based on dataset real evaluations
+        nsamples = None
+        with open(self._solutions_file, 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        training_samples = int(0.7 * nsamples) # 70% used for learning part at each iteration
+        
         print("Start fitting again the surrogate model")
+        print(f'Using {training_samples} of {nsamples} samples for train dataset')
         for r in range(10):
-            print("Iteration n°{0}: for fitting surrogate".format(r))
-            algo.run(samplefile=self.solutions_file, sample=100, step=10)
+            print(f"Iteration n°{r}: for fitting surrogate")
+            algo.run(samplefile=self._solutions_file, sample=training_samples, step=10)
 
-        joblib.dump(algo, self.surrogate_file_path)
+        joblib.dump(algo, self._surrogate_file_path)
 
 
     def load_surrogate(self):
@@ -98,47 +109,47 @@ class ILSSurrogate(Algorithm):
         """
 
         # need to first train surrogate if not exist
-        if not os.path.exists(self.surrogate_file_path):
+        if not os.path.exists(self._surrogate_file_path):
             self.train_surrogate()
 
-        self.surrogate = joblib.load(self.surrogate_file_path)
+        self._surrogate = joblib.load(self._surrogate_file_path)
 
         # update evaluator function
-        self.surrogate_evaluator = lambda s: self.surrogate.surrogate.predict([s.data])[0]
+        self._surrogate_evaluator = lambda s: self._surrogate.surrogate.predict([s._data])[0]
 
     def add_to_surrogate(self, solution):
 
         # save real evaluated solution into specific file for surrogate
-        with open(self.solutions_file, 'a') as f:
+        with open(self._solutions_file, 'a') as f:
 
             line = ""
 
-            for index, e in enumerate(solution.data):
+            for index, e in enumerate(solution._data):
 
                 line += str(e)
                 
-                if index < len(solution.data) - 1:
+                if index < len(solution._data) - 1:
                     line += ","
 
             line += ";"
-            line += str(solution.score)
+            line += str(solution._score)
 
             f.write(line + "\n")
 
-    def run(self, _evaluations, _ls_evaluations=100):
+    def run(self, evaluations, ls_evaluations=100):
         """
         Run the iterated local search algorithm using local search (EvE compromise)
 
         Args:
-            _evaluations: {int} -- number of global evaluations for ILS
-            _ls_evaluations: {int} -- number of Local search evaluations (default: 100)
+            evaluations: {int} -- number of global evaluations for ILS
+            ls_evaluations: {int} -- number of Local search evaluations (default: 100)
 
         Returns:
             {Solution} -- best solution found
         """
 
         # by default use of mother method to initialize variables
-        super().run(_evaluations)
+        super().run(evaluations)
 
         # initialize current solution
         self.initRun()
@@ -146,13 +157,22 @@ class ILSSurrogate(Algorithm):
         # enable resuming for ILS
         self.resume()
 
-        if self.start_train_surrogate > self.getGlobalEvaluation():
+        # count number of surrogate obtained and restart using real evaluations done
+        nsamples = None
+        with open(self._solutions_file, 'r') as f:
+            nsamples = len(f.readlines()) - 1 # avoid header
+
+        if self.getGlobalEvaluation() < nsamples:
+            print(f'Restart using {nsamples} of {self._start_train_surrogate} real evaluations obtained')
+            self._numberOfEvaluations = nsamples
+
+        if self._start_train_surrogate > self.getGlobalEvaluation():
         
             # get `self.start_train_surrogate` number of real evaluations and save it into surrogate dataset file
             # using randomly generated solutions (in order to cover seearch space)
-            while self.start_train_surrogate > self.getGlobalEvaluation():
+            while self._start_train_surrogate > self.getGlobalEvaluation():
                 
-                newSolution = self.initializer()
+                newSolution = self.initialiser()
 
                 # evaluate new solution
                 newSolution.evaluate(self.evaluator)
@@ -168,78 +188,90 @@ class ILSSurrogate(Algorithm):
 
         # local search algorithm implementation
         while not self.stop():
-            
+
             # set current evaluator based on used or not of surrogate function
-            current_evaluator = self.surrogate_evaluator if self.start_train_surrogate <= self.getGlobalEvaluation() else self.evaluator
+            self.evaluator = self._surrogate_evaluator if self._start_train_surrogate <= self.getGlobalEvaluation() else self._main_evaluator
 
             # create new local search instance
             # passing global evaluation param from ILS
-            ls = LocalSearchSurrogate(self.initializer,
-                         current_evaluator,
-                         self.operators,
+            ls = LocalSearchSurrogate(self.initialiser,
+                         self.evaluator,
+                         self._operators,
                          self.policy,
                          self.validator,
-                         self.maximise,
-                         _parent=self)
+                         self._maximise,
+                         parent=self)
 
             # add same callbacks
-            for callback in self.callbacks:
+            for callback in self._callbacks:
                 ls.addCallback(callback)
 
             # create and search solution from local search
-            newSolution = ls.run(_ls_evaluations)
+            newSolution = ls.run(ls_evaluations)
 
             # if better solution than currently, replace it (solution saved in training pool, only if surrogate process is in a second process step)
             # Update : always add new solution into surrogate pool, not only if solution is better
             #if self.isBetter(newSolution) and self.start_train_surrogate < self.getGlobalEvaluation():
-            if self.start_train_surrogate <= self.getGlobalEvaluation():
+            if self._start_train_surrogate <= self.getGlobalEvaluation():
 
                 # if better solution found from local search, retrained the found solution and test again
                 # without use of surrogate
-                fitness_score = self.evaluator(newSolution)
+                fitness_score = self._main_evaluator(newSolution)
                 # self.increaseEvaluation() # dot not add evaluation
 
                 newSolution.score = fitness_score
 
                 # if solution is really better after real evaluation, then we replace
                 if self.isBetter(newSolution):
-                    self.bestSolution = newSolution
+                    self.result = newSolution
 
                 self.add_to_surrogate(newSolution)
 
                 self.progress()
 
+            # check using specific dynamic criteria based on r^2
+            r_squared = self._surrogate.analysis.coefficient_of_determination(self._surrogate.surrogate)
+            training_surrogate_every = int(r_squared * self._ls_train_surrogate)
+            print(f"=> R^2 of surrogate is of {r_squared}. Retraining model every {training_surrogate_every} LS")
+
+            # avoid issue when lauching every each local search
+            if training_surrogate_every <= 0:
+                training_surrogate_every = 1
+
             # check if necessary or not to train again surrogate
-            if self.n_local_search % self.ls_train_surrogate == 0 and self.start_train_surrogate <= self.getGlobalEvaluation():
+            if self._n_local_search % training_surrogate_every == 0 and self._start_train_surrogate <= self.getGlobalEvaluation():
 
                 # train again surrogate on real evaluated solutions file
+                start_training = time.time()
                 self.train_surrogate()
+                training_time = time.time() - start_training
+
+                self._surrogate_analyser = SurrogateAnalysis(training_time, training_surrogate_every, r_squared, self.getGlobalMaxEvaluation(), self._n_local_search)
 
                 # reload new surrogate function
                 self.load_surrogate()
 
             # increase number of local search done
-            self.n_local_search += 1
+            self._n_local_search += 1
 
             self.information()
 
-        logging.info("End of %s, best solution found %s" %
-                     (type(self).__name__, self.bestSolution))
+        logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
 
         self.end()
-        return self.bestSolution
+        return self._bestSolution
 
-    def addCallback(self, _callback):
+    def addCallback(self, callback):
         """Add new callback to algorithm specifying usefull parameters
 
         Args:
-            _callback: {Callback} -- specific Callback instance
+            callback: {Callback} -- specific Callback instance
         """
         # specify current main algorithm reference
-        if self.parent is not None:
-            _callback.setAlgo(self.parent)
+        if self.getParent() is not None:
+            callback.setAlgo(self.getParent())
         else:
-            _callback.setAlgo(self)
+            callback.setAlgo(self)
 
         # set as new
-        self.callbacks.append(_callback)
+        self._callbacks.append(callback)

+ 18 - 15
optimization/LSSurrogate.py

@@ -5,7 +5,7 @@
 import logging
 
 # module imports
-from macop.algorithms.Algorithm import Algorithm
+from macop.algorithms.base import Algorithm
 
 
 class LocalSearchSurrogate(Algorithm):
@@ -41,9 +41,12 @@ class LocalSearchSurrogate(Algorithm):
         #     self.bestSolution = self.parent.bestSolution
 
         # initialize current solution
-        self.initRun()
+        # self.initRun()
 
-        solutionSize = self.currentSolution.size
+        for callback in self._callbacks:
+            callback.load()
+
+        solutionSize = self._currentSolution.size
 
         # local search algorithm implementation
         while not self.stop():
@@ -51,19 +54,20 @@ class LocalSearchSurrogate(Algorithm):
             for _ in range(solutionSize):
 
                 # update current solution using policy
-                newSolution = self.update(self.currentSolution)
+                newSolution = self.update(self._currentSolution)
 
                 # if better solution than currently, replace it
                 if self.isBetter(newSolution):
-                    self.bestSolution = newSolution
+                    self._bestSolution = newSolution
 
                 # increase number of evaluations
                 self.increaseEvaluation()
 
-                self.progress()
+                # self.progress()
+                for callback in self._callbacks:
+                    callback.run()
 
-                logging.info("---- Current %s - SCORE %s" %
-                             (newSolution, newSolution.fitness()))
+                logging.info(f"---- Current {newSolution} - SCORE {newSolution.fitness}")
 
                 # add to surrogate pool file if necessary (using ILS parent reference)
                 # if self.parent.start_train_surrogate >= self.getGlobalEvaluation():
@@ -74,12 +78,11 @@ class LocalSearchSurrogate(Algorithm):
                     break
 
             # after applying local search on currentSolution, we switch into new local area using known current bestSolution
-            self.currentSolution = self.bestSolution
+            self._currentSolution = self._bestSolution
 
-        logging.info("End of %s, best solution found %s" %
-                     (type(self).__name__, self.bestSolution))
+        logging.info(f"End of {type(self).__name__}, best solution found {self._bestSolution}")
 
-        return self.bestSolution
+        return self._bestSolution
 
     def addCallback(self, callback):
         """Add new callback to algorithm specifying usefull parameters
@@ -88,10 +91,10 @@ class LocalSearchSurrogate(Algorithm):
             callback: {Callback} -- specific Callback instance
         """
         # specify current main algorithm reference
-        if self.parent is not None:
-            callback.setAlgo(self.parent)
+        if self._parent is not None:
+            callback.setAlgo(self._parent)
         else:
             callback.setAlgo(self)
 
         # set as new
-        self.callbacks.append(callback)
+        self._callbacks.append(callback)

+ 121 - 0
optimization/callbacks/MultiPopCheckpoint.py

@@ -0,0 +1,121 @@
+# main imports
+import os
+import logging
+import numpy as np
+
+# module imports
+from macop.callbacks.base import Callback
+from macop.utils.progress import macop_text, macop_line
+
+
+class MultiPopCheckpoint(Callback):
+    """
+    MultiCheckpoint is used for loading previous computations and start again after loading checkpoint
+
+    Attributes:
+        algo: {:class:`~macop.algorithms.base.Algorithm`} -- main algorithm instance reference
+        every: {int} -- checkpoint frequency used (based on number of evaluations)
+        filepath: {str} -- file path where checkpoints will be saved
+    """
+    def run(self):
+        """
+        Check if necessary to do backup based on `every` variable
+        """
+        # get current population
+        population = self._algo.population
+
+        currentEvaluation = self._algo.getGlobalEvaluation()
+
+        # backup if necessary
+        if currentEvaluation % self._every == 0:
+
+            logging.info("Checkpoint is done into " + self._filepath)
+
+            with open(self._filepath, 'a') as f:
+                
+                pop_line = str(currentEvaluation) + ';'
+
+                scores = []
+                pop_data = []
+
+                for solution in population:
+                    solution_data = ""
+                    solutionSize = len(solution.data)
+
+                    for index, val in enumerate(solution.data):
+                        solution_data += str(val)
+
+                        if index < solutionSize - 1:
+                            solution_data += ' '
+                    
+                    scores.append(solution.fitness)
+                    pop_data.append(solution_data)
+
+                for score in scores:
+                    pop_line += str(score) + ';'
+
+                for data in pop_data:
+                    pop_line += data + ';'
+
+                pop_line += '\n'
+
+                f.write(pop_line)
+
+    def load(self):
+        """
+        Load backup lines as population and set algorithm state (population and pareto front) at this backup
+        """
+        if os.path.exists(self._filepath):
+
+            logging.info('Load best solution from last checkpoint')
+            with open(self._filepath, 'r') as f:
+
+                # read data for each line
+                data_line = f.readlines()[-1]
+                
+                data = data_line.replace(';\n', '').split(';')
+          
+                # get evaluation  information
+                globalEvaluation = int(data[0])
+
+                if self._algo.getParent() is not None:
+                    self._algo.getParent(
+                    )._numberOfEvaluations = globalEvaluation
+                else:
+                    self._algo._numberOfEvaluations = globalEvaluation
+
+                nSolutions = len(self._algo.population)
+                scores = list(map(float, data[1:nSolutions + 1]))
+
+                # get best solution data information
+                pop_str_data = data[nSolutions + 1:]
+                pop_data = []
+
+                for sol_data in pop_str_data:
+                    current_data = list(map(int, sol_data.split(' ')))
+                    pop_data.append(current_data)
+
+                for i, sol_data in enumerate(pop_data):
+
+                    # initialise and fill with data
+                    self._algo.population[i] = self._algo.initialiser()
+                    self._algo.population[i].data = np.array(sol_data)
+                    self._algo.population[i].fitness = scores[i]
+
+            macop_line(self._algo)
+            macop_text(
+                self._algo,
+                f'Load of available population from `{self._filepath}`')
+            macop_text(
+                self._algo,
+                f'Restart algorithm from evaluation {self._algo._numberOfEvaluations}.'
+            )
+        else:
+            macop_text(
+                self._algo,
+                'No backup found... Start running algorithm from evaluation 0.'
+            )
+            logging.info(
+                "Can't load backup... Backup filepath not valid in Checkpoint")
+
+        macop_line(self._algo)

+ 96 - 0
optimization/callbacks/MultiSurrogateCheckpoint.py

@@ -0,0 +1,96 @@
+"""Basic Checkpoint class implementation
+"""
+
+# main imports
+import os
+import logging
+import numpy as np
+
+# module imports
+from macop.callbacks.Callback import Callback
+from macop.utils.color import macop_text, macop_line
+
+
+class MultiSurrogateCheckpoint(Callback):
+    """
+    MultiSurrogateCheckpoint is used for keep track of sub-surrogate problem indices
+
+    Attributes:
+        algo: {Algorithm} -- main algorithm instance reference
+        every: {int} -- checkpoint frequency used (based on number of evaluations)
+        filepath: {str} -- file path where checkpoints will be saved
+    """
+    def run(self):
+        """
+        Check if necessary to do backup based on `every` variable
+        """
+        # get current best solution
+        k_indices = self._algo._k_indices
+
+        # Do nothing is surrogate analyser does not exist
+        if k_indices is None:
+            return
+
+        currentEvaluation = self._algo.getGlobalEvaluation()
+
+        # backup if necessary
+        if currentEvaluation % self._every == 0:
+
+            logging.info(f"Multi surrogate analysis checkpoint is done into {self._filepath}")
+
+            line = str(currentEvaluation) + ';'
+
+            for indices in k_indices:
+                
+                indices_data = ""
+                indices_size = len(indices)
+
+                for index, val in enumerate(indices):
+                    indices_data += str(val)
+
+                    if index < indices_size - 1:
+                        indices_data += ' '
+
+                line += indices_data + ';'
+
+            line += '\n'
+
+            # check if file exists
+            if not os.path.exists(self._filepath):
+                with open(self._filepath, 'w') as f:
+                    f.write(line)
+            else:
+                with open(self._filepath, 'a') as f:
+                    f.write(line)
+
+    def load(self):
+        """
+        Load nothing there, as we only log surrogate training information
+        """
+        if os.path.exists(self._filepath):
+
+            logging.info('Load best solution from last checkpoint')
+            with open(self._filepath) as f:
+
+                # get last line and read data
+                lastline = f.readlines()[-1].replace(';\n', '')
+                data = lastline.split(';')
+
+                k_indices = data[1:]
+                k_indices_final = []
+
+                for indices in k_indices:
+                    k_indices_final.append(list(map(int, indices.split(' '))))
+
+                # set k_indices into main algorithm
+                self._algo._k_indices = k_indices_final
+
+            print(macop_line())
+            print(macop_text(f' MultiSurrogateCheckpoint found from `{self._filepath}` file.'))
+
+        else:
+            print(macop_text('No backup found... Start running using new `k_indices` values'))
+            logging.info("Can't load MultiSurrogate backup... Backup filepath not valid in  MultiSurrogateCheckpoint")
+
+        print(macop_line())
+

+ 92 - 0
optimization/callbacks/MultiSurrogateSpecificCheckpoint.py

@@ -0,0 +1,92 @@
+"""Basic Checkpoint class implementation
+"""
+
+# main imports
+import os
+import logging
+import numpy as np
+
+# module imports
+from macop.callbacks.Callback import Callback
+from macop.utils.color import macop_text, macop_line
+
+
+class MultiSurrogateSpecificCheckpoint(Callback):
+    """
+    MultiSurrogateSpecificCheckpoint is used for keep track of sub-surrogate problem indices
+
+    Attributes:
+        algo: {Algorithm} -- main algorithm instance reference
+        every: {int} -- checkpoint frequency used (based on number of evaluations)
+        filepath: {str} -- file path where checkpoints will be saved
+    """
+    def run(self):
+        """
+        Check if necessary to do backup based on `every` variable
+        """
+        # get current best solution
+        population = self._algo._population
+
+        # Do nothing is surrogate analyser does not exist
+        if population is None:
+            return
+
+        currentEvaluation = self._algo.getGlobalEvaluation()
+
+        # backup if necessary
+        if currentEvaluation % self._every == 0:
+
+            logging.info(f"Multi surrogate specific analysis checkpoint is done into {self._filepath}")
+
+            line = ''
+
+            fitness_list = [ s.fitness for s in population ]
+            fitness_data = ' '.join(list(map(str, fitness_list)))
+
+            for s in population:
+                s_data = ' '.join(list(map(str, s._data)))
+                line += s_data + ';'
+
+            line += fitness_data
+
+            line += '\n'
+
+            # check if file exists
+            if not os.path.exists(self._filepath):
+                with open(self._filepath, 'w') as f:
+                    f.write(line)
+            else:
+                with open(self._filepath, 'a') as f:
+                    f.write(line)
+
+    def load(self):
+        """
+        Load previous population
+        """
+        if os.path.exists(self._filepath):
+
+            logging.info('Load population solutions from last checkpoint')
+            with open(self._filepath) as f:
+
+                # get last line and read data
+                lastline = f.readlines()[-1].replace('\n', '')
+                data = lastline.split(';')
+
+                fitness_scores = list(map(float, data[-1].split(' ')))
+
+                for i, solution_data in enumerate(data[:-1]):
+                    self._algo._population[i]._data = list(map(int, solution_data.split(' ')))
+                    self._algo._population[i]._score = fitness_scores[i]
+
+            print(macop_line())
+            print(macop_text(f' MultiSurrogateSpecificCheckpoint found from `{self._filepath}` file. Start running using previous `population` values'))
+
+            for i, s in enumerate(self._algo._population):
+                print(f'Population[{i}]: best solution fitness is {s.fitness}')
+
+        else:
+            print(macop_text('No backup found... Start running using new `population` values'))
+            logging.info("Can't load MultiSurrogateSpecific backup... Backup filepath not valid in  MultiSurrogateCheckpoint")
+
+        print(macop_line())
+

+ 93 - 0
optimization/callbacks/SurrogateCheckpoint.py

@@ -0,0 +1,93 @@
+"""Basic Checkpoint class implementation
+"""
+
+# main imports
+import os
+import logging
+import numpy as np
+
+# module imports
+from macop.callbacks.Callback import Callback
+from macop.utils.color import macop_text, macop_line
+
+
+class SurrogateCheckpoint(Callback):
+    """
+    SurrogateCheckpoint is used for logging training data information about surrogate
+
+    Attributes:
+        algo: {Algorithm} -- main algorithm instance reference
+        every: {int} -- checkpoint frequency used (based on number of evaluations)
+        filepath: {str} -- file path where checkpoints will be saved
+    """
+    def run(self):
+        """
+        Check if necessary to do backup based on `every` variable
+        """
+        # get current best solution
+        solution = self._algo._bestSolution
+        surrogate_analyser = self._algo._surrogate_analyser
+
+        # Do nothing is surrogate analyser does not exist
+        if surrogate_analyser is None:
+            return
+
+        currentEvaluation = self._algo.getGlobalEvaluation()
+
+        # backup if necessary
+        if currentEvaluation % self._every == 0:
+
+            logging.info(f"Surrogate analysis checkpoint is done into {self._filepath}")
+
+            solutionData = ""
+            solutionSize = len(solution._data)
+
+            for index, val in enumerate(solution._data):
+                solutionData += str(val)
+
+                if index < solutionSize - 1:
+                    solutionData += ' '
+
+            # get score of r² and mae
+            r2_data = ' '.join(list(map(str, surrogate_analyser._r2_scores)))
+            mae_data = ' '.join(list(map(str, surrogate_analyser._mae_scores)))
+
+            line = str(currentEvaluation) + ';' + str(surrogate_analyser._n_local_search) + ';' + str(surrogate_analyser._every_ls) + ';' + str(surrogate_analyser._time) + ';' + r2_data + ';' + str(surrogate_analyser._r2) \
+                + ';' + mae_data + ';' + str(surrogate_analyser._mae) \
+                + ';' + solutionData + ';' + str(solution.fitness) + ';\n'
+
+            # check if file exists
+            if not os.path.exists(self._filepath):
+                with open(self._filepath, 'w') as f:
+                    f.write(line)
+            else:
+                with open(self._filepath, 'a') as f:
+                    f.write(line)
+
+    def load(self):
+        """
+        only load global n local search
+        """
+
+        if os.path.exists(self._filepath):
+
+            logging.info('Load n local search')
+            with open(self._filepath) as f:
+
+                # get last line and read data
+                lastline = f.readlines()[-1].replace(';\n', '')
+                data = lastline.split(';')
+
+                n_local_search = int(data[1])
+
+                # set k_indices into main algorithm
+                self._algo._total_n_local_search = n_local_search
+
+            print(macop_line())
+            print(macop_text(f'SurrogateCheckpoint found from `{self._filepath}` file.'))
+
+        else:
+            print(macop_text('No backup found...'))
+            logging.info("Can't load Surrogate backup... Backup filepath not valid in SurrogateCheckpoint")
+
+        print(macop_line())

+ 107 - 0
optimization/operators/SimplePopCrossover.py

@@ -0,0 +1,107 @@
+from macop.operators.base import Crossover
+import random
+
+class SimplePopCrossover(Crossover):
+
+    def apply(self, solution1, solution2=None):
+        """Create new solution based on best solution found and solution passed as parameter
+
+        Args:
+            solution1: {:class:`~macop.solutions.base.Solution`} -- the first solution to use for generating new solution
+            solution2: {:class:`~macop.solutions.base.Solution`} -- the second solution to use for generating new solution (using population)
+
+        Returns:
+            {:class:`~macop.solutions.base.Solution`}: new generated solution
+        """
+
+        size = solution1._size
+
+        # copy data of solution
+        firstData = solution1.data.copy()
+
+        population = self._algo.population if self._algo.population is not None else self._algo.getParent().population
+
+        # copy of solution2 as output solution
+        valid = False
+        copy_solution = None
+
+        # use of different random population solution
+        ncounter = 0
+
+        while not valid:
+
+            chosen_solution = population[random.randint(0, len(population) - 1)]
+            
+            if not list(chosen_solution.data) == list(firstData) or ncounter > 10:
+                valid = True
+                copy_solution = chosen_solution.clone()
+
+            # add security
+            ncounter += 1
+
+        # default empty solution
+        if copy_solution is None:
+            copy_solution = self._algo.initialiser()
+
+        # random split index
+        splitIndex = int(size / 2)
+
+        if random.uniform(0, 1) > 0.5:
+            copy_solution.data[splitIndex:] = firstData[splitIndex:]
+        else:
+            copy_solution.data[:splitIndex] = firstData[:splitIndex]
+
+        return copy_solution
+
+
+class RandomPopCrossover(Crossover):
+
+    def apply(self, solution1, solution2=None):
+        """Create new solution based on best solution found and solution passed as parameter
+
+        Args:
+            solution1: {:class:`~macop.solutions.base.Solution`} -- the first solution to use for generating new solution
+            solution2: {:class:`~macop.solutions.base.Solution`} -- the second solution to use for generating new solution (using population)
+
+        Returns:
+            {:class:`~macop.solutions.base.Solution`}: new generated solution
+        """
+
+        size = solution1._size
+
+        # copy data of solution
+        firstData = solution1.data.copy()
+
+        population = self._algo.population if self._algo.population is not None else self._algo.getParent().population
+
+        # copy of solution2 as output solution
+        valid = False
+        copy_solution = None
+
+        # use of different random population solution
+        ncounter = 0
+
+        while not valid:
+
+            chosen_solution = population[random.randint(0, len(population) - 1)]
+            
+            if not list(chosen_solution.data) == list(firstData) or ncounter > 10:
+                valid = True
+                copy_solution = chosen_solution.clone()
+
+            # add security
+            ncounter += 1
+
+        # default empty solution
+        if copy_solution is None:
+            copy_solution = self._algo.initialiser()
+
+        # random split index
+        splitIndex = random.randint(0, len(population) - 1)
+
+        if random.uniform(0, 1) > 0.5:
+            copy_solution.data[splitIndex:] = firstData[splitIndex:]
+        else:
+            copy_solution.data[:splitIndex] = firstData[:splitIndex]
+
+        return copy_solution

+ 24 - 0
optimization/utils/SurrogateAnalysis.py

@@ -0,0 +1,24 @@
+# quick object for surrogate logging data
+class SurrogateAnalysisMono():
+
+    def __init__(self, time, every_ls, r2, mae, evaluations, n_local_search):
+        self._time = time
+        self._every_ls = every_ls
+        self._r2 = r2
+        self._mae = mae
+        self._evaluations = evaluations
+        self._n_local_search = n_local_search
+
+
+class SurrogateAnalysisMulti():
+
+    def __init__(self, time, every_ls, r2_scores, r2, mae_scores, mae, evaluations, n_local_search):
+        self._time = time
+        self._every_ls = every_ls
+        self._r2_scores = r2_scores
+        self._r2 = r2
+        self._mae_scores = mae_scores
+        self._mae = mae
+        self._evaluations = evaluations
+        self._n_local_search = n_local_search
+

+ 1 - 1
rnn

@@ -1 +1 @@
-Subproject commit c4acf38ab3816725faa0bb84c68cb18fdd5ebb32
+Subproject commit 8c2fc8888c190be9829e3f3a4d5d320014b5b96f

+ 1 - 1
run_openML_surrogate.py

@@ -14,7 +14,7 @@ def main():
     p_ils = args.ils
     p_ls  = args.ls
 
-    open_ml_problems = os.listdir(open_ml_problems_folder)
+    open_ml_problems = sorted(os.listdir(open_ml_problems_folder))
 
     for ml_problem in open_ml_problems:
 

+ 102 - 0
run_openML_surrogate_multi.py

@@ -0,0 +1,102 @@
+import os, argparse
+import shutil
+
+open_ml_problems_folder = 'OpenML_datasets'
+surrogate_data_path = 'data/surrogate/data/'
+
+k_params = [100, 150, 200]
+k_random = [0, 1]
+k_reinit = [0, 1]
+every_ls = 50
+
+n_times = 5
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Find best features for each OpenML problems")
+
+    parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
+    parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
+
+    args = parser.parse_args()
+
+    p_ils = args.ils
+    p_ls  = args.ls
+
+    open_ml_problems = sorted(os.listdir(open_ml_problems_folder))
+
+    for ml_problem in open_ml_problems:
+
+        # for each problem prepare specific pre-computed real solution file
+        ml_problem_name = ml_problem.replace('.csv', '')
+        ml_problem_path = os.path.join(open_ml_problems_folder, ml_problem)
+
+        ml_surrogate_command = f"python find_best_attributes_surrogate_openML_multi.py " \
+                               f"--data {ml_problem_path} " \
+                               f"--ils {p_ils} " \
+                               f"--ls {p_ls} " \
+                               f"--output {ml_problem_name} " \
+                               f"--generate_only 1"
+        print(f'Running extraction real evaluations data for {ml_problem_name}')
+        os.system(ml_surrogate_command)
+
+        real_evaluation_data_file_path = os.path.join(surrogate_data_path, ml_problem_name)
+
+        # for each multi param:
+        # - copy precomputed real_evaluation_data_file
+        # - run new instance using specific data
+        for k in k_params:
+            for k_r in k_random:
+                for k_init in k_reinit:
+
+                    # if not use of k_reinit and use of random, then run multiple times this instance to do mean later
+                    if k_init == 0 and k_r == 1:
+
+                        for i in range(n_times):
+
+                            str_index = str(i)
+
+                            while len(str_index) < 3:
+                                str_index = "0" + str_index
+
+                            output_problem_name = f'{ml_problem_name}_everyLS_{every_ls}_k{k}_random{k_r}_reinit{k_init}_{str_index}'
+
+                            # copy pre-computed real evaluation data for this instance
+                            current_output_real_eval_path = os.path.join(surrogate_data_path, output_problem_name)
+                            shutil.copy2(real_evaluation_data_file_path, current_output_real_eval_path)
+
+                            ml_surrogate_multi_command = f"python find_best_attributes_surrogate_openML_multi.py " \
+                                            f"--data {ml_problem_path} " \
+                                            f"--ils {p_ils} " \
+                                            f"--ls {p_ls} " \
+                                            f"--every_ls {every_ls} " \
+                                            f"--k_division {k} " \
+                                            f"--k_random {k_r} " \
+                                            f"--k_dynamic {k_init} " \
+                                            f"--output {output_problem_name}"
+                            print(f'Running extraction data for {ml_problem_name} with [ils: {p_ils}, ls: {p_ls}, k: {k}, k_r: {k_r}, k_reinit: {k_init}, i: {i}]')
+                            os.system(ml_surrogate_multi_command)
+
+                    else:
+                        output_problem_name = f'{ml_problem_name}_everyLS_{every_ls}_k{k}_random{k_r}_reinit{k_init}'
+
+                        # copy pre-computed real evaluation data for this instance
+                        current_output_real_eval_path = os.path.join(surrogate_data_path, output_problem_name)
+                        shutil.copy2(real_evaluation_data_file_path, current_output_real_eval_path)
+
+                        ml_surrogate_multi_command = f"python find_best_attributes_surrogate_openML_multi.py " \
+                                        f"--data {ml_problem_path} " \
+                                        f"--ils {p_ils} " \
+                                        f"--ls {p_ls} " \
+                                        f"--every_ls {every_ls} " \
+                                        f"--k_division {k} " \
+                                        f"--k_random {k_r} " \
+                                        f"--k_dynamic {k_init} " \
+                                        f"--output {output_problem_name}"
+                        print(f'Running extraction data for {ml_problem_name} with [ils: {p_ils}, ls: {p_ls}, k: {k}, k_r: {k_r}, k_reinit: {k_init}]')
+                        os.system(ml_surrogate_multi_command)
+
+
+
+if __name__ == "__main__":
+    main()

+ 104 - 0
run_openML_surrogate_multi_specific.py

@@ -0,0 +1,104 @@
+import os, argparse
+import shutil
+
+open_ml_problems_folder = 'OpenML_datasets'
+surrogate_data_path = 'data/surrogate/data/'
+
+# fixed test params as first part
+k_params = [30, 50, 100] # 100, 150, 200
+k_random = [0] # 0, 1
+k_reinit = [0] # 0, 1
+every_ls = 5
+
+n_times = 5
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Find best features for each OpenML problems")
+
+    parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
+    parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
+
+    args = parser.parse_args()
+
+    p_ils = args.ils
+    p_ls  = args.ls
+
+    open_ml_problems = sorted(os.listdir(open_ml_problems_folder))
+
+    for ml_problem in open_ml_problems:
+
+        # for each problem prepare specific pre-computed real solution file
+        ml_problem_name = ml_problem.replace('.csv', '')
+        ml_problem_path = os.path.join(open_ml_problems_folder, ml_problem)
+
+        # ml_surrogate_command = f"python find_best_attributes_surrogate_openML_multi_specific.py " \
+        #                        f"--data {ml_problem_path} " \
+        #                        f"--ils {p_ils} " \
+        #                        f"--ls {p_ls} " \
+        #                        f"--output {ml_problem_name} " \
+        #                        f"--generate_only 1"
+        # print(f'Running extraction real evaluations data for {ml_problem_name}')
+        # os.system(ml_surrogate_command)
+
+        # real_evaluation_data_file_path = os.path.join(surrogate_data_path, ml_problem_name)
+
+        # for each multi param:
+        # - copy precomputed real_evaluation_data_file
+        # - run new instance using specific data
+        for k in k_params:
+            for k_r in k_random:
+                for k_init in k_reinit:
+
+                    # if not use of k_reinit and use of random, then run multiple times this instance to do mean later
+                    if k_init == 0 and k_r == 1:
+                        for i in range(n_times):
+
+                            str_index = str(i)
+
+                            while len(str_index) < 3:
+                                str_index = "0" + str_index
+
+                            output_problem_name = f'{ml_problem_name}_everyLS_{every_ls}_k{k}_random{k_r}_reinit{k_init}_{str_index}'
+
+                            # copy pre-computed real evaluation data for this instance
+                            # current_output_real_eval_path = os.path.join(surrogate_data_path, output_problem_name)
+                            # shutil.copy2(real_evaluation_data_file_path, current_output_real_eval_path)
+
+                            ml_surrogate_multi_command = f"python find_best_attributes_surrogate_openML_multi_specific.py " \
+                                            f"--data {ml_problem_path} " \
+                                            f"--ils {p_ils} " \
+                                            f"--ls {p_ls} " \
+                                            f"--every_ls {every_ls} " \
+                                            f"--k_division {k} " \
+                                            f"--k_random {k_r} " \
+                                            f"--k_dynamic {k_init} " \
+                                            f"--output {output_problem_name}"
+                                            
+                            print(f'Running extraction data for {ml_problem_name} with [ils: {p_ils}, ls: {p_ls}, k: {k}, k_r: {k_r}, i: {i}]')
+                            os.system(ml_surrogate_multi_command)
+
+                    else:
+                        output_problem_name = f'{ml_problem_name}_everyLS_{every_ls}_k{k}_random{k_r}_reinit{k_init}'
+
+                        # copy pre-computed real evaluation data for this instance
+                        # current_output_real_eval_path = os.path.join(surrogate_data_path, output_problem_name)
+                        # shutil.copy2(real_evaluation_data_file_path, current_output_real_eval_path)
+
+                        ml_surrogate_multi_command = f"python find_best_attributes_surrogate_openML_multi_specific.py " \
+                                        f"--data {ml_problem_path} " \
+                                        f"--ils {p_ils} " \
+                                        f"--ls {p_ls} " \
+                                        f"--every_ls {every_ls} " \
+                                        f"--k_division {k} " \
+                                        f"--k_random {k_r} " \
+                                        f"--k_dynamic {k_init} " \
+                                        f"--output {output_problem_name}"
+                                        
+                        print(f'Running extraction data for {ml_problem_name} with [ils: {p_ils}, ls: {p_ls}, k: {k}, k_r: {k_r}]')
+                        os.system(ml_surrogate_multi_command)
+
+
+
+if __name__ == "__main__":
+    main()

+ 28 - 0
run_surrogate_rendering.sh

@@ -0,0 +1,28 @@
+#! /bin/bash
+
+# default param
+ILS=100000
+LS=100
+SS=50
+LENGTH=30
+POP=100
+ORDER=2
+TRAIN_EVERY=20
+
+
+output="rendering-attributes-ILS_${ILS}-POP_${POP}-LS_${LS}-SS_${SS}-SO_${ORDER}-SE_${TRAIN_EVERY}"
+DATASET="rnn/data/datasets/features-selection-rendering-scaled/features-selection-rendering-scaled"
+
+for POP in {20,60,100};
+do
+    for ORDER in {2,3};
+    do
+        for LS in {100,500,1000};
+        do
+            output="rendering-attributes-ILS_${ILS}-POP_${POP}-LS_${LS}-SS_${SS}-SO_${ORDER}-SE_${TRAIN_EVERY}"
+            echo "Run optim attributes using: ${output}"
+            python find_best_attributes_surrogate.py --data ${DATASET} --start_surrogate ${SS} --length 30 --ils ${ILS} --ls ${LS} --pop ${POP} --order ${ORDER} --train_every ${TRAIN_EVERY}  --output ${output}
+        done
+    done
+done
+

+ 1 - 1
wsao

@@ -1 +1 @@
-Subproject commit 875bbdcee600f911958dbc47e319afbb8796f49d
+Subproject commit a92ca5a285c6530498a68db5c08d89d2dfe246ec