Syntesis images noise detection using CNN approach
Jérôme BUISINE 1c642e0305 Merge branch 'release/v0.0.8' | il y a 5 ans | |
---|---|---|
img_train | il y a 6 ans | |
img_validation | il y a 6 ans | |
.gitignore | il y a 6 ans | |
LICENSE.md | il y a 5 ans | |
README.md | il y a 5 ans | |
RESULTS.md | il y a 6 ans | |
classification_cnn_keras.py | il y a 6 ans | |
classification_cnn_keras_cross_validation.py | il y a 5 ans | |
classification_cnn_keras_svd.py | il y a 6 ans | |
classification_cnn_keras_svd_img.py | il y a 6 ans | |
config.json | il y a 6 ans | |
generate_dataset.py | il y a 5 ans | |
preprocessing_functions.py | il y a 6 ans | |
requirements.txt | il y a 6 ans | |
run.sh | il y a 6 ans |
pip install -r requirements.txt
Generate dataset (run only once time or clean data folder before):
python generate_dataset.py
It will split scenes and generate all data you need for your neural network. You can specify the number of sub images you want in the script by modifying _NUMBER_SUBIMAGES variable or using parameter.
python generate_dataset.py --nb xxxx
There are 3 kinds of Neural Networks:
After your built your neural network in classification_cnn_keras.py, you just have to run it:
python classification_cnn_keras_svd.py --directory xxxx --output xxxxx --batch_size xx --epochs xx --img xx (or --image_width xx --img_height xx)
A config file in json is available and keeps in memory all image sizes available.
This project contains modules:
All these modules will be enhanced during development of the project