|
@@ -0,0 +1,530 @@
|
|
|
+#include <stdio.h>
|
|
|
+#include <string.h>
|
|
|
+#include <sstream>
|
|
|
+#include <iostream>
|
|
|
+#include <fstream>
|
|
|
+#include <vector>
|
|
|
+#include <tuple>
|
|
|
+#include <cmath>
|
|
|
+#include <numeric>
|
|
|
+#include <map>
|
|
|
+#include <algorithm>
|
|
|
+#include <filesystem>
|
|
|
+#include <unistd.h>
|
|
|
+
|
|
|
+#include <bits/stdc++.h>
|
|
|
+#include <iostream>
|
|
|
+#include <sys/stat.h>
|
|
|
+#include <sys/types.h>
|
|
|
+
|
|
|
+#include "rawls.h"
|
|
|
+
|
|
|
+struct Point {
|
|
|
+ unsigned x;
|
|
|
+ unsigned y;
|
|
|
+};
|
|
|
+
|
|
|
+struct Tile {
|
|
|
+ Point p1;
|
|
|
+ Point p2;
|
|
|
+};
|
|
|
+
|
|
|
+std::vector<std::string> split(const std::string& s, char delimiter)
|
|
|
+{
|
|
|
+ std::vector<std::string> tokens;
|
|
|
+ std::string token;
|
|
|
+ std::istringstream tokenStream(s);
|
|
|
+ while (std::getline(tokenStream, token, delimiter))
|
|
|
+ {
|
|
|
+ tokens.push_back(token);
|
|
|
+ }
|
|
|
+ return tokens;
|
|
|
+}
|
|
|
+
|
|
|
+void writeProgress(float progress, bool moveUp = false){
|
|
|
+ int barWidth = 200;
|
|
|
+
|
|
|
+ if (moveUp){
|
|
|
+ // move up line
|
|
|
+ std::cout << "\e[A";
|
|
|
+ std::cout.flush();
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cout << "[";
|
|
|
+ int pos = barWidth * progress;
|
|
|
+ for (int i = 0; i < barWidth; ++i) {
|
|
|
+ if (i < pos) std::cout << "=";
|
|
|
+ else if (i == pos) std::cout << ">";
|
|
|
+ else std::cout << " ";
|
|
|
+ }
|
|
|
+ std::cout << "] " << int(progress * 100.0) << " %\r";
|
|
|
+ std::cout.flush();
|
|
|
+}
|
|
|
+
|
|
|
+float getMedian(std::vector<float> &values) {
|
|
|
+ std::sort(values.begin(), values.end());
|
|
|
+
|
|
|
+ unsigned size = values.size();
|
|
|
+
|
|
|
+ if (size % 2 == 0)
|
|
|
+ {
|
|
|
+ return (values[size / 2 - 1] + values[size / 2]) / 2;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ return values[size / 2];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+float getVariance(float &mean, std::vector<float> &values){
|
|
|
+
|
|
|
+ // Now calculate the variance
|
|
|
+ auto variance_func = [&mean](float accumulator, const float& val) {
|
|
|
+ return accumulator + pow(val - mean, 2);
|
|
|
+ };
|
|
|
+
|
|
|
+ return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
|
|
|
+}
|
|
|
+
|
|
|
+float getSkewness(float &mean, float &std, std::vector<float> &values) {
|
|
|
+ unsigned size = values.size();
|
|
|
+
|
|
|
+ // Now calculate the sum of pow 3
|
|
|
+ auto order3_func = [&mean, &std](float accumulator, const float& val) {
|
|
|
+ return accumulator + pow((val - mean) / std, 3);
|
|
|
+ };
|
|
|
+
|
|
|
+ float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
|
|
|
+
|
|
|
+ return order3 / size;
|
|
|
+}
|
|
|
+
|
|
|
+float getKurtosis(float &mean, float &std, std::vector<float> &values){
|
|
|
+ unsigned size = values.size();
|
|
|
+
|
|
|
+ // Now calculate the sum of pow 4
|
|
|
+ auto order4_func = [&mean, &std](float accumulator, const float& val) {
|
|
|
+ return accumulator + pow((val - mean) / std, 4);
|
|
|
+ };
|
|
|
+
|
|
|
+ float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
|
|
|
+
|
|
|
+ return order4 / size;
|
|
|
+}
|
|
|
+
|
|
|
+float getMode(std::vector<float> &values) {
|
|
|
+
|
|
|
+ std::vector<float> pvalues;
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < values.size(); i++){
|
|
|
+ pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ typedef std::map<float,unsigned int> CounterMap;
|
|
|
+ CounterMap counts;
|
|
|
+ for (int i = 0; i < pvalues.size(); ++i)
|
|
|
+ {
|
|
|
+ CounterMap::iterator it(counts.find(pvalues[i]));
|
|
|
+ if (it != counts.end()){
|
|
|
+ it->second++;
|
|
|
+ } else {
|
|
|
+ counts[pvalues[i]] = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Create a map iterator and point to beginning of map
|
|
|
+ std::map<float, unsigned int>::iterator it = counts.begin();
|
|
|
+ unsigned noccurences = 0;
|
|
|
+ float modeValue = 0.;
|
|
|
+ // Iterate over the map using Iterator till end.
|
|
|
+ while (it != counts.end())
|
|
|
+ {
|
|
|
+ // Accessing KEY from element pointed by it.
|
|
|
+ float potentialMode = it->first;
|
|
|
+ // Accessing VALUE from element pointed by it.
|
|
|
+ unsigned count = it->second;
|
|
|
+
|
|
|
+ if (count > noccurences) {
|
|
|
+ noccurences = count;
|
|
|
+ modeValue = potentialMode;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Increment the Iterator to point to next entry
|
|
|
+ it++;
|
|
|
+ }
|
|
|
+
|
|
|
+ return modeValue;
|
|
|
+}
|
|
|
+
|
|
|
+// float getEstimator(std::string estimator, std::vector<float> values) {
|
|
|
+
|
|
|
+// // another version of scripts in order to quick compute data
|
|
|
+// if (estimator == "median") {
|
|
|
+
|
|
|
+// std::sort(values.begin(), values.end());
|
|
|
+
|
|
|
+// unsigned size = values.size();
|
|
|
+
|
|
|
+// if (size % 2 == 0)
|
|
|
+// {
|
|
|
+// return (values[size / 2 - 1] + values[size / 2]) / 2;
|
|
|
+// }
|
|
|
+// else
|
|
|
+// {
|
|
|
+// return values[size / 2];
|
|
|
+// }
|
|
|
+// } else if (estimator == "mean") {
|
|
|
+
|
|
|
+// return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
|
|
|
+
|
|
|
+// } else if (estimator == "var") {
|
|
|
+// // Calculate the mean
|
|
|
+// const float mean = std::accumulate(values.begin(), values.end(), 0.0) / values.size();
|
|
|
+
|
|
|
+// // Now calculate the variance
|
|
|
+// auto variance_func = [&mean](float accumulator, const float& val) {
|
|
|
+// return accumulator + pow(val - mean, 2);
|
|
|
+// };
|
|
|
+
|
|
|
+// return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
|
|
|
+
|
|
|
+// } else if (estimator == "std") {
|
|
|
+
|
|
|
+// return sqrt(getEstimator("var", values));
|
|
|
+
|
|
|
+// } else if (estimator == "skewness") {
|
|
|
+
|
|
|
+// unsigned size = values.size();
|
|
|
+
|
|
|
+// float mean = getEstimator("mean", values);
|
|
|
+// float std = getEstimator("std", values);
|
|
|
+
|
|
|
+// // Now calculate the sum of pow 3
|
|
|
+// auto order3_func = [&mean, &std](float accumulator, const float& val) {
|
|
|
+// return accumulator + pow((val - mean) / std, 3);
|
|
|
+// };
|
|
|
+
|
|
|
+// float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
|
|
|
+
|
|
|
+// return order3 / size;
|
|
|
+
|
|
|
+// } else if (estimator == "kurtosis") {
|
|
|
+
|
|
|
+// unsigned size = values.size();
|
|
|
+
|
|
|
+// float mean = getEstimator("mean", values);
|
|
|
+// float std = getEstimator("std", values);
|
|
|
+
|
|
|
+// // Now calculate the sum of pow 4
|
|
|
+// auto order4_func = [&mean, &std](float accumulator, const float& val) {
|
|
|
+// return accumulator + pow((val - mean) / std, 4);
|
|
|
+// };
|
|
|
+
|
|
|
+// float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
|
|
|
+
|
|
|
+// return order4 / size;
|
|
|
+
|
|
|
+// } else if (estimator == "mode") {
|
|
|
+
|
|
|
+// std::vector<float> pvalues;
|
|
|
+
|
|
|
+// for (unsigned i = 0; i < values.size(); i++){
|
|
|
+// pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
|
|
|
+// }
|
|
|
+
|
|
|
+// typedef std::map<float,unsigned int> CounterMap;
|
|
|
+// CounterMap counts;
|
|
|
+// for (int i = 0; i < pvalues.size(); ++i)
|
|
|
+// {
|
|
|
+// CounterMap::iterator it(counts.find(pvalues[i]));
|
|
|
+// if (it != counts.end()){
|
|
|
+// it->second++;
|
|
|
+// } else {
|
|
|
+// counts[pvalues[i]] = 1;
|
|
|
+// }
|
|
|
+// }
|
|
|
+
|
|
|
+// // Create a map iterator and point to beginning of map
|
|
|
+// std::map<float, unsigned int>::iterator it = counts.begin();
|
|
|
+// unsigned noccurences = 0;
|
|
|
+// float modeValue = 0.;
|
|
|
+// // Iterate over the map using Iterator till end.
|
|
|
+// while (it != counts.end())
|
|
|
+// {
|
|
|
+// // Accessing KEY from element pointed by it.
|
|
|
+// float potentialMode = it->first;
|
|
|
+// // Accessing VALUE from element pointed by it.
|
|
|
+// unsigned count = it->second;
|
|
|
+
|
|
|
+// if (count > noccurences) {
|
|
|
+// noccurences = count;
|
|
|
+// modeValue = potentialMode;
|
|
|
+// }
|
|
|
+
|
|
|
+// // Increment the Iterator to point to next entry
|
|
|
+// it++;
|
|
|
+// }
|
|
|
+
|
|
|
+// return modeValue;
|
|
|
+// }
|
|
|
+
|
|
|
+// // by default
|
|
|
+// return 0.;
|
|
|
+// }
|
|
|
+
|
|
|
+int main(int argc, char *argv[]){
|
|
|
+
|
|
|
+ std::string folderName;
|
|
|
+ std::vector<std::string> estimators = {"mean", "median", "var", "std", "skewness", "kurtosis", "mode"};
|
|
|
+ unsigned blockHeight;
|
|
|
+ unsigned blockWidth;
|
|
|
+ unsigned nfiles = 10000;
|
|
|
+ std::string outputFolder;
|
|
|
+
|
|
|
+ for (int i = 1; i < argc; ++i) {
|
|
|
+ if (!strcmp(argv[i], "--folder") || !strcmp(argv[i], "-folder")) {
|
|
|
+ folderName = argv[++i];
|
|
|
+ } else if (!strcmp(argv[i], "--bwidth") || !strcmp(argv[i], "-bwidth")) {
|
|
|
+ blockHeight = atoi(argv[++i]);
|
|
|
+ } else if (!strcmp(argv[i], "--bheight") || !strcmp(argv[i], "-bheight")) {
|
|
|
+ blockWidth = atoi(argv[++i]);
|
|
|
+ } else if (!strcmp(argv[i], "--output") || !strcmp(argv[i], "-output")) {
|
|
|
+ outputFolder = argv[++i];
|
|
|
+ } else if (!strcmp(argv[i], "--nfiles") || !strcmp(argv[i], "-nfiles")) {
|
|
|
+ nfiles = atoi(argv[++i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // create outputs directory
|
|
|
+ mkdir(outputFolder.c_str(), 0755);
|
|
|
+
|
|
|
+ auto elements = split(folderName, '/');
|
|
|
+ std::string sceneName = elements.at(elements.size() - 1);
|
|
|
+
|
|
|
+ for (int i = 0; i < estimators.size(); i++) {
|
|
|
+
|
|
|
+ mkdir((outputFolder + "/" + estimators[i]).c_str(), 0755);
|
|
|
+ mkdir((outputFolder + "/" + estimators[i] + "/" + sceneName).c_str(), 0755);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // get all files path
|
|
|
+ std::vector<std::string> imagesPath;
|
|
|
+
|
|
|
+ for (const auto & entry : std::filesystem::directory_iterator(folderName)){
|
|
|
+ std::string imageName = entry.path().string();
|
|
|
+ if (rawls::HasExtension(imageName, ".rawls") || rawls::HasExtension(imageName, ".rawls_20")){
|
|
|
+ imagesPath.push_back(imageName);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if (imagesPath.size() != nfiles) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::sort(imagesPath.begin(), imagesPath.end());
|
|
|
+
|
|
|
+ std::tuple<unsigned, unsigned, unsigned> data = rawls::getDimensionsRAWLS(imagesPath.at(0));
|
|
|
+
|
|
|
+ unsigned outputWidth = std::get<0>(data);
|
|
|
+ unsigned outputHeight = std::get<1>(data);
|
|
|
+ unsigned nbChanels = std::get<2>(data);
|
|
|
+
|
|
|
+ std::vector<float*> outputBuffers;
|
|
|
+ std::vector<std::string> outputFiles;
|
|
|
+ std::vector<std::string> selectedEstimators;
|
|
|
+ // new buffer size as new output buffer image (default 3 channels)
|
|
|
+
|
|
|
+ for (int i = 0; i < estimators.size(); i++) {
|
|
|
+
|
|
|
+ std::string outputFile = outputFolder + "/" + estimators[i] + "/" + sceneName + "/" + sceneName + ".rawls";
|
|
|
+
|
|
|
+ std::ifstream ifile;
|
|
|
+ ifile.open(outputFile);
|
|
|
+ if(!ifile) {
|
|
|
+
|
|
|
+ // create new buffer entry
|
|
|
+ selectedEstimators.push_back(estimators[i]);
|
|
|
+ outputFiles.push_back(outputFile);
|
|
|
+ outputBuffers.push_back(new float[outputHeight * outputWidth * nbChanels]);
|
|
|
+
|
|
|
+ } else {
|
|
|
+ ifile.close();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // get all tiles to apply
|
|
|
+ unsigned nWidth = ceil(outputWidth / (float)blockWidth);
|
|
|
+ unsigned nHeight = ceil(outputHeight / (float)blockHeight);
|
|
|
+
|
|
|
+ std::vector<Tile> tiles;
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < nWidth; i++) {
|
|
|
+ for (unsigned j = 0; j < nHeight; j++) {
|
|
|
+
|
|
|
+ unsigned x1 = i * blockWidth;
|
|
|
+ unsigned y1 = j * blockHeight;
|
|
|
+
|
|
|
+ unsigned x2 = i * blockWidth + blockWidth;
|
|
|
+ unsigned y2 = j * blockHeight + blockHeight;
|
|
|
+
|
|
|
+ x2 = x2 > outputWidth ? outputWidth: x2;
|
|
|
+ y2 = y2 > outputHeight ? outputHeight: y2;
|
|
|
+
|
|
|
+ Point p1 = {x1, y1};
|
|
|
+ Point p2 = {x2, y2};
|
|
|
+
|
|
|
+ Tile tile = {p1, p2};
|
|
|
+ tiles.push_back(tile);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ unsigned nsamples = imagesPath.size();
|
|
|
+ unsigned nloop = tiles.size() * nsamples;
|
|
|
+ unsigned nloopCounter = 0;
|
|
|
+
|
|
|
+ for (unsigned t_index = 0; t_index < tiles.size(); t_index++){
|
|
|
+
|
|
|
+ Tile tile = tiles.at(t_index);
|
|
|
+
|
|
|
+ //std::cout << "Tile: (" << tile.p1.x << ", " << tile.p1.y << ")" << " => " << "(" << tile.p2.x << ", " << tile.p2.y << ")" << std::endl;
|
|
|
+
|
|
|
+ unsigned nvalues = (tile.p2.x - tile.p1.x) * (tile.p2.y - tile.p1.y) * 3;
|
|
|
+
|
|
|
+ std::vector<std::vector<float>> rgbValues(nvalues);
|
|
|
+
|
|
|
+ for (unsigned i = 0; i < nsamples; i++) {
|
|
|
+
|
|
|
+ try {
|
|
|
+
|
|
|
+ float* RGBpixels = rawls::getPixelsRAWLS(imagesPath.at(i));
|
|
|
+ std::cout << "Read image n°" << i << " / " << nsamples << " for tile n°" << t_index << " / " << tiles.size() << std::endl;
|
|
|
+
|
|
|
+ unsigned index = 0;
|
|
|
+ for (int y = tile.p1.y; y < tile.p2.y; ++y) {
|
|
|
+ for (int x = tile.p1.x; x < tile.p2.x; ++x) {
|
|
|
+
|
|
|
+ rgbValues.at(index).push_back(RGBpixels[3 * (y * outputWidth + x) + 0]);
|
|
|
+ rgbValues.at(index + 1).push_back(RGBpixels[3 * (y * outputWidth + x) + 1]);
|
|
|
+ rgbValues.at(index + 2).push_back(RGBpixels[3 * (y * outputWidth + x) + 2]);
|
|
|
+
|
|
|
+ index += 3;
|
|
|
+
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ delete RGBpixels;
|
|
|
+
|
|
|
+ } catch(std::exception& e){
|
|
|
+ std::cout << "Error occurs when reading file" << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ // display progress
|
|
|
+ nloopCounter += 1;
|
|
|
+ writeProgress(nloopCounter / (float)nloop);
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // for (int i = 0; i < outputFiles.size(); i++) {
|
|
|
+
|
|
|
+ // extract stat and add predicted value into output buffer
|
|
|
+ unsigned index = 0;
|
|
|
+
|
|
|
+ for (int y = tile.p1.y; y < tile.p2.y; ++y) {
|
|
|
+ for (int x = tile.p1.x; x < tile.p2.x; ++x) {
|
|
|
+
|
|
|
+ // Here we will compute each estimator in specific order
|
|
|
+ // => {"median", "var", "std", "skewness", "kurtosis", "mode"}
|
|
|
+ auto rvalues = rgbValues.at(index + 0);
|
|
|
+ auto gvalues = rgbValues.at(index + 1);
|
|
|
+ auto bvalues = rgbValues.at(index + 2);
|
|
|
+
|
|
|
+ // Index [0] : MEAN
|
|
|
+ float rmean = std::accumulate(rvalues.begin(), rvalues.end(), 0.0) / rvalues.size();
|
|
|
+ float gmean = std::accumulate(gvalues.begin(), gvalues.end(), 0.0) / gvalues.size();
|
|
|
+ float bmean = std::accumulate(bvalues.begin(), bvalues.end(), 0.0) / bvalues.size();
|
|
|
+
|
|
|
+ outputBuffers.at(0)[3 * (y * outputWidth + x) + 0] = rmean;
|
|
|
+ outputBuffers.at(0)[3 * (y * outputWidth + x) + 1] = gmean;
|
|
|
+ outputBuffers.at(0)[3 * (y * outputWidth + x) + 2] = bmean;
|
|
|
+
|
|
|
+ // Index [1] : MEDIAN
|
|
|
+ float rmedian = getMedian(rvalues);
|
|
|
+ float gmedian = getMedian(gvalues);
|
|
|
+ float bmedian = getMedian(bvalues);
|
|
|
+
|
|
|
+ outputBuffers.at(1)[3 * (y * outputWidth + x) + 0] = rmedian;
|
|
|
+ outputBuffers.at(1)[3 * (y * outputWidth + x) + 1] = gmedian;
|
|
|
+ outputBuffers.at(1)[3 * (y * outputWidth + x) + 2] = bmedian;
|
|
|
+
|
|
|
+ // Index [2] : VARIANCE
|
|
|
+ float rvariance = getVariance(rmean, rvalues);
|
|
|
+ float gvariance = getVariance(gmean, gvalues);
|
|
|
+ float bvariance = getVariance(bmean, bvalues);
|
|
|
+
|
|
|
+ outputBuffers.at(2)[3 * (y * outputWidth + x) + 0] = rvariance;
|
|
|
+ outputBuffers.at(2)[3 * (y * outputWidth + x) + 1] = gvariance;
|
|
|
+ outputBuffers.at(2)[3 * (y * outputWidth + x) + 2] = bvariance;
|
|
|
+
|
|
|
+ // Index [3] : STD
|
|
|
+ float rstd = sqrt(rvariance);
|
|
|
+ float gstd = sqrt(gvariance);
|
|
|
+ float bstd = sqrt(bvariance);
|
|
|
+
|
|
|
+ outputBuffers.at(3)[3 * (y * outputWidth + x) + 0] = rstd;
|
|
|
+ outputBuffers.at(3)[3 * (y * outputWidth + x) + 1] = gstd;
|
|
|
+ outputBuffers.at(3)[3 * (y * outputWidth + x) + 2] = bstd;
|
|
|
+
|
|
|
+ // Index [4] : SKEWNESS
|
|
|
+ float rskew = getSkewness(rmean, rstd, rvalues);
|
|
|
+ float gskew = getSkewness(gmean, gstd, gvalues);
|
|
|
+ float bskew = getSkewness(bmean, bstd, bvalues);
|
|
|
+
|
|
|
+ outputBuffers.at(4)[3 * (y * outputWidth + x) + 0] = rskew;
|
|
|
+ outputBuffers.at(4)[3 * (y * outputWidth + x) + 1] = gskew;
|
|
|
+ outputBuffers.at(4)[3 * (y * outputWidth + x) + 2] = bskew;
|
|
|
+
|
|
|
+ // Index [5] : KURTOSIS
|
|
|
+ float rkurtosis = getKurtosis(rmean, rstd, rvalues);
|
|
|
+ float gkurtosis = getKurtosis(gmean, gstd, gvalues);
|
|
|
+ float bkurtosis = getKurtosis(bmean, bstd, bvalues);
|
|
|
+
|
|
|
+ outputBuffers.at(5)[3 * (y * outputWidth + x) + 0] = rkurtosis;
|
|
|
+ outputBuffers.at(5)[3 * (y * outputWidth + x) + 1] = gkurtosis;
|
|
|
+ outputBuffers.at(5)[3 * (y * outputWidth + x) + 2] = bkurtosis;
|
|
|
+
|
|
|
+ // Index [6] : MODE (TODO: check computation time and if very necessary)
|
|
|
+ float rmode = getMode(rvalues);
|
|
|
+ float gmode = getMode(gvalues);
|
|
|
+ float bmode = getMode(bvalues);
|
|
|
+
|
|
|
+ outputBuffers.at(6)[3 * (y * outputWidth + x) + 0] = rmode;
|
|
|
+ outputBuffers.at(6)[3 * (y * outputWidth + x) + 1] = gmode;
|
|
|
+ outputBuffers.at(6)[3 * (y * outputWidth + x) + 2] = bmode;
|
|
|
+
|
|
|
+ index += 3;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Save here new rawls image
|
|
|
+ std::string comments = rawls::getCommentsRAWLS(imagesPath.at(0));
|
|
|
+
|
|
|
+ for (int i = 0; i < outputFiles.size(); i++) {
|
|
|
+
|
|
|
+ // construct specific outfile name
|
|
|
+ bool success = rawls::saveAsRAWLS(outputWidth, outputHeight, nbChanels, comments, outputBuffers[i], outputFiles[i]);
|
|
|
+
|
|
|
+ if (success) {
|
|
|
+ std::cout << "New image saved into " << outputFiles[i] << std::endl;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ std::cout << "Error while saving current image " << outputFiles[i] << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ delete outputBuffers[i];
|
|
|
+ }
|
|
|
+
|
|
|
+}
|