Pārlūkot izejas kodu

Merge branch 'release/v1.1.6'

Jérôme BUISINE 3 gadi atpakaļ
vecāks
revīzija
7754b15268

+ 3 - 0
main/CMakeLists.txt

@@ -9,6 +9,7 @@ add_executable(rawls_merge_MON_pct_incr rawls_merge_MON_pct_incr.cpp)
 add_executable(rawls_update rawls_update.cpp)
 add_executable(extract_stats_images extract_stats_images.cpp)
 add_executable(extract_stats_images_all extract_stats_images_all.cpp)
+add_executable(extract_stats_images_all_reduced extract_stats_images_all_reduced.cpp)
 
 target_link_libraries(rawls_convert LINK_PUBLIC rawls)
 target_link_libraries(rawls_merge_mean LINK_PUBLIC rawls)
@@ -20,6 +21,7 @@ target_link_libraries(rawls_merge_MON_incr LINK_PUBLIC rawls)
 target_link_libraries(rawls_merge_MON_pct_incr LINK_PUBLIC rawls)
 target_link_libraries(extract_stats_images LINK_PUBLIC rawls)
 target_link_libraries(extract_stats_images_all LINK_PUBLIC rawls)
+target_link_libraries(extract_stats_images_all_reduced LINK_PUBLIC rawls)
 target_link_libraries(rawls_update LINK_PUBLIC rawls rawls_v1)
 
 set_property(TARGET rawls_merge_mean PROPERTY CXX_STANDARD 17)
@@ -32,4 +34,5 @@ set_property(TARGET rawls_merge_MON_incr PROPERTY CXX_STANDARD 17)
 set_property(TARGET rawls_merge_MON_pct_incr PROPERTY CXX_STANDARD 17)
 set_property(TARGET extract_stats_images PROPERTY CXX_STANDARD 17)
 set_property(TARGET extract_stats_images_all PROPERTY CXX_STANDARD 17)
+set_property(TARGET extract_stats_images_all_reduced PROPERTY CXX_STANDARD 17)
 set_property(TARGET rawls_update PROPERTY CXX_STANDARD 17)

+ 530 - 0
main/extract_stats_images_all_reduced.cpp

@@ -0,0 +1,530 @@
+#include <stdio.h>
+#include <string.h>
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <tuple>
+#include <cmath>
+#include <numeric>  
+#include <map>
+#include <algorithm>
+#include <filesystem>
+#include <unistd.h> 
+
+#include <bits/stdc++.h> 
+#include <iostream> 
+#include <sys/stat.h> 
+#include <sys/types.h> 
+
+#include "rawls.h"
+
+struct Point {
+    unsigned x;
+    unsigned y;
+};
+
+struct Tile {
+    Point p1;
+    Point p2;
+};
+
+std::vector<std::string> split(const std::string& s, char delimiter)
+{
+   std::vector<std::string> tokens;
+   std::string token;
+   std::istringstream tokenStream(s);
+   while (std::getline(tokenStream, token, delimiter))
+   {
+      tokens.push_back(token);
+   }
+   return tokens;
+}
+
+void writeProgress(float progress, bool moveUp = false){
+    int barWidth = 200;
+
+    if (moveUp){
+        // move up line
+        std::cout << "\e[A";
+        std::cout.flush();
+    }
+
+    std::cout << "[";
+    int pos = barWidth * progress;
+    for (int i = 0; i < barWidth; ++i) {
+        if (i < pos) std::cout << "=";
+        else if (i == pos) std::cout << ">";
+        else std::cout << " ";
+    }
+    std::cout << "] " << int(progress * 100.0) << " %\r";
+    std::cout.flush();
+}
+
+float getMedian(std::vector<float> &values) {
+    std::sort(values.begin(), values.end());
+
+    unsigned size = values.size();
+
+    if (size % 2 == 0)
+    {
+        return (values[size / 2 - 1] + values[size / 2]) / 2;
+    }
+    else 
+    {
+        return values[size / 2];
+    }
+}
+
+float getVariance(float &mean, std::vector<float> &values){   
+
+    // Now calculate the variance
+    auto variance_func = [&mean](float accumulator, const float& val) {
+        return accumulator + pow(val - mean, 2);
+    };
+
+    return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
+}
+
+float getSkewness(float &mean, float &std, std::vector<float> &values) {
+    unsigned size = values.size();
+
+    // Now calculate the sum of pow 3
+    auto order3_func = [&mean, &std](float accumulator, const float& val) {
+        return accumulator + pow((val - mean) / std, 3);
+    };
+
+    float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
+
+    return order3 / size;
+}
+
+float getKurtosis(float &mean, float &std, std::vector<float> &values){
+    unsigned size = values.size();
+
+    // Now calculate the sum of pow 4
+    auto order4_func = [&mean, &std](float accumulator, const float& val) {
+        return accumulator + pow((val - mean) / std, 4);
+    };
+
+    float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
+
+    return order4 / size;
+}
+
+float getMode(std::vector<float> &values) {
+
+     std::vector<float> pvalues;
+
+    for (unsigned i = 0; i < values.size(); i++){
+        pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
+    }
+
+    typedef std::map<float,unsigned int> CounterMap;
+    CounterMap counts;
+    for (int i = 0; i < pvalues.size(); ++i)
+    {
+        CounterMap::iterator it(counts.find(pvalues[i]));
+        if (it != counts.end()){
+            it->second++;   
+        } else {
+            counts[pvalues[i]] = 1;
+        }
+    }
+
+    // Create a map iterator and point to beginning of map
+    std::map<float, unsigned int>::iterator it = counts.begin();
+    unsigned noccurences = 0;
+    float modeValue = 0.;
+    // Iterate over the map using Iterator till end.
+    while (it != counts.end())
+    {
+        // Accessing KEY from element pointed by it.
+        float potentialMode = it->first;
+        // Accessing VALUE from element pointed by it.
+        unsigned count = it->second;
+
+        if (count > noccurences) {
+            noccurences = count;
+            modeValue = potentialMode;
+        }
+
+        // Increment the Iterator to point to next entry
+        it++;
+    }
+
+    return modeValue;
+}
+
+// float getEstimator(std::string estimator, std::vector<float> values) {
+
+//     // another version of scripts in order to quick compute data
+//     if (estimator == "median") {
+        
+//         std::sort(values.begin(), values.end());
+
+//         unsigned size = values.size();
+
+//         if (size % 2 == 0)
+//         {
+//             return (values[size / 2 - 1] + values[size / 2]) / 2;
+//         }
+//         else 
+//         {
+//             return values[size / 2];
+//         }
+//     } else if (estimator == "mean") {
+
+//         return std::accumulate(values.begin(), values.end(), 0.0) / values.size(); 
+
+//     } else if (estimator == "var") {
+//         // Calculate the mean
+//         const float mean = std::accumulate(values.begin(), values.end(), 0.0) / values.size();
+
+//         // Now calculate the variance
+//         auto variance_func = [&mean](float accumulator, const float& val) {
+//             return accumulator + pow(val - mean, 2);
+//         };
+
+//         return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
+
+//     } else if (estimator == "std") {
+
+//         return sqrt(getEstimator("var", values));
+
+//     } else if (estimator == "skewness") {
+
+//         unsigned size = values.size();
+
+//         float mean = getEstimator("mean", values);
+//         float std = getEstimator("std", values);
+
+//         // Now calculate the sum of pow 3
+//         auto order3_func = [&mean, &std](float accumulator, const float& val) {
+//             return accumulator + pow((val - mean) / std, 3);
+//         };
+
+//         float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
+
+//         return order3 / size;
+
+//     } else if (estimator == "kurtosis") {
+        
+//         unsigned size = values.size();
+
+//         float mean = getEstimator("mean", values);
+//         float std = getEstimator("std", values);
+
+//         // Now calculate the sum of pow 4
+//         auto order4_func = [&mean, &std](float accumulator, const float& val) {
+//             return accumulator + pow((val - mean) / std, 4);
+//         };
+
+//         float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
+
+//         return order4 / size;
+
+//     } else if (estimator == "mode") {
+
+//         std::vector<float> pvalues;
+
+//         for (unsigned i = 0; i < values.size(); i++){
+//             pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
+//         }
+
+//         typedef std::map<float,unsigned int> CounterMap;
+//         CounterMap counts;
+//         for (int i = 0; i < pvalues.size(); ++i)
+//         {
+//             CounterMap::iterator it(counts.find(pvalues[i]));
+//             if (it != counts.end()){
+//                 it->second++;   
+//             } else {
+//                 counts[pvalues[i]] = 1;
+//             }
+//         }
+
+//         // Create a map iterator and point to beginning of map
+//         std::map<float, unsigned int>::iterator it = counts.begin();
+//         unsigned noccurences = 0;
+//         float modeValue = 0.;
+//         // Iterate over the map using Iterator till end.
+//         while (it != counts.end())
+//         {
+//             // Accessing KEY from element pointed by it.
+//             float potentialMode = it->first;
+//             // Accessing VALUE from element pointed by it.
+//             unsigned count = it->second;
+
+//             if (count > noccurences) {
+//                 noccurences = count;
+//                 modeValue = potentialMode;
+//             }
+
+//             // Increment the Iterator to point to next entry
+//             it++;
+//         }
+
+//         return modeValue;
+//     }
+
+//     // by default
+//     return 0.;
+// }
+
+int main(int argc, char *argv[]){
+
+    std::string folderName;
+    std::vector<std::string> estimators = {"mean", "median", "var", "std", "skewness", "kurtosis", "mode"};
+    unsigned blockHeight;
+    unsigned blockWidth;
+    unsigned nfiles = 10000;
+    std::string outputFolder;
+
+    for (int i = 1; i < argc; ++i) {
+        if (!strcmp(argv[i], "--folder") || !strcmp(argv[i], "-folder")) {
+            folderName = argv[++i];
+        } else if (!strcmp(argv[i], "--bwidth") || !strcmp(argv[i], "-bwidth")) {
+            blockHeight = atoi(argv[++i]);
+        } else if (!strcmp(argv[i], "--bheight") || !strcmp(argv[i], "-bheight")) {
+            blockWidth = atoi(argv[++i]);
+        } else if (!strcmp(argv[i], "--output") || !strcmp(argv[i], "-output")) {
+            outputFolder = argv[++i];
+        } else if (!strcmp(argv[i], "--nfiles") || !strcmp(argv[i], "-nfiles")) {
+            nfiles = atoi(argv[++i]);
+        }
+    }
+
+    // create outputs directory
+    mkdir(outputFolder.c_str(), 0755);
+
+    auto elements = split(folderName, '/');
+    std::string sceneName = elements.at(elements.size() - 1);
+
+    for (int i = 0; i < estimators.size(); i++) {
+
+        mkdir((outputFolder + "/" + estimators[i]).c_str(), 0755);
+        mkdir((outputFolder + "/" + estimators[i] + "/" + sceneName).c_str(), 0755);
+    }
+
+
+    // get all files path
+    std::vector<std::string> imagesPath;
+
+    for (const auto & entry : std::filesystem::directory_iterator(folderName)){
+        std::string imageName = entry.path().string();
+        if (rawls::HasExtension(imageName, ".rawls") || rawls::HasExtension(imageName, ".rawls_20")){
+            imagesPath.push_back(imageName);
+        }
+    }
+
+    if (imagesPath.size() != nfiles) {
+        return 0;
+    }
+
+    std::sort(imagesPath.begin(), imagesPath.end());
+
+    std::tuple<unsigned, unsigned, unsigned> data = rawls::getDimensionsRAWLS(imagesPath.at(0));
+
+    unsigned outputWidth = std::get<0>(data);
+    unsigned outputHeight = std::get<1>(data);
+    unsigned nbChanels = std::get<2>(data);
+
+    std::vector<float*> outputBuffers;
+    std::vector<std::string> outputFiles;
+    std::vector<std::string> selectedEstimators;
+    // new buffer size as new output buffer image (default 3 channels)
+
+    for (int i = 0; i < estimators.size(); i++) {
+
+        std::string outputFile = outputFolder + "/" + estimators[i] + "/" + sceneName + "/" + sceneName + ".rawls";
+
+        std::ifstream ifile;
+        ifile.open(outputFile);
+        if(!ifile) {
+        
+            // create new buffer entry
+            selectedEstimators.push_back(estimators[i]);
+            outputFiles.push_back(outputFile);
+            outputBuffers.push_back(new float[outputHeight * outputWidth * nbChanels]);
+        
+        } else {
+            ifile.close();
+        }
+    }
+
+    // get all tiles to apply
+    unsigned nWidth = ceil(outputWidth / (float)blockWidth);
+    unsigned nHeight = ceil(outputHeight / (float)blockHeight);
+
+    std::vector<Tile> tiles;
+
+    for (unsigned i = 0; i < nWidth; i++) {
+        for (unsigned j = 0; j < nHeight; j++) {
+
+            unsigned x1 = i * blockWidth;
+            unsigned y1 = j * blockHeight;
+
+            unsigned x2 = i * blockWidth + blockWidth;
+            unsigned y2 = j * blockHeight + blockHeight;
+
+            x2 = x2 > outputWidth ? outputWidth: x2;
+            y2 = y2 > outputHeight ? outputHeight: y2;
+            
+            Point p1 = {x1, y1};
+            Point p2 = {x2, y2};
+
+            Tile tile = {p1, p2};
+            tiles.push_back(tile);
+        }
+    }
+
+    unsigned nsamples = imagesPath.size();
+    unsigned nloop = tiles.size() * nsamples;
+    unsigned nloopCounter = 0;
+
+    for (unsigned t_index = 0; t_index < tiles.size(); t_index++){
+
+        Tile tile = tiles.at(t_index);
+
+        //std::cout << "Tile: (" << tile.p1.x << ", " << tile.p1.y << ")" << " => " << "(" << tile.p2.x << ", " << tile.p2.y << ")" << std::endl;
+
+        unsigned nvalues = (tile.p2.x - tile.p1.x) * (tile.p2.y - tile.p1.y) * 3;
+
+        std::vector<std::vector<float>> rgbValues(nvalues);
+
+        for (unsigned i = 0; i < nsamples; i++) {
+            
+            try {
+                
+                float* RGBpixels = rawls::getPixelsRAWLS(imagesPath.at(i));
+                std::cout << "Read image n°" << i << " / " << nsamples << " for tile n°" << t_index << " / " << tiles.size() << std::endl;
+
+                unsigned index = 0;
+                for (int y = tile.p1.y; y < tile.p2.y; ++y) {
+                    for (int x = tile.p1.x; x < tile.p2.x; ++x) {
+            
+                        rgbValues.at(index).push_back(RGBpixels[3 * (y * outputWidth + x) + 0]);
+                        rgbValues.at(index + 1).push_back(RGBpixels[3 * (y * outputWidth + x) + 1]);
+                        rgbValues.at(index + 2).push_back(RGBpixels[3 * (y * outputWidth + x) + 2]);
+
+                        index += 3;
+                    
+                    }
+                }
+
+                delete RGBpixels;
+
+            } catch(std::exception& e){
+                std::cout << "Error occurs when reading file" << std::endl;
+            }
+
+            // display progress
+            nloopCounter += 1;
+            writeProgress(nloopCounter / (float)nloop);
+        }
+
+
+        // for (int i = 0; i < outputFiles.size(); i++) {
+        
+        // extract stat and add predicted value into output buffer
+        unsigned index = 0;
+
+        for (int y = tile.p1.y; y < tile.p2.y; ++y) {
+            for (int x = tile.p1.x; x < tile.p2.x; ++x) {
+                
+                // Here we will compute each estimator in specific order
+                // => {"median", "var", "std", "skewness", "kurtosis", "mode"}
+                auto rvalues = rgbValues.at(index + 0);
+                auto gvalues = rgbValues.at(index + 1);
+                auto bvalues = rgbValues.at(index + 2);
+                
+                // Index [0] : MEAN
+                float rmean = std::accumulate(rvalues.begin(), rvalues.end(), 0.0) / rvalues.size();
+                float gmean = std::accumulate(gvalues.begin(), gvalues.end(), 0.0) / gvalues.size();
+                float bmean = std::accumulate(bvalues.begin(), bvalues.end(), 0.0) / bvalues.size();
+
+                outputBuffers.at(0)[3 * (y * outputWidth + x) + 0] = rmean;
+                outputBuffers.at(0)[3 * (y * outputWidth + x) + 1] = gmean;
+                outputBuffers.at(0)[3 * (y * outputWidth + x) + 2] = bmean;
+
+                // Index [1] : MEDIAN
+                float rmedian = getMedian(rvalues);
+                float gmedian = getMedian(gvalues);
+                float bmedian = getMedian(bvalues);
+
+                outputBuffers.at(1)[3 * (y * outputWidth + x) + 0] = rmedian;
+                outputBuffers.at(1)[3 * (y * outputWidth + x) + 1] = gmedian;
+                outputBuffers.at(1)[3 * (y * outputWidth + x) + 2] = bmedian;
+
+                // Index [2] : VARIANCE
+                float rvariance = getVariance(rmean, rvalues);
+                float gvariance = getVariance(gmean, gvalues);
+                float bvariance = getVariance(bmean, bvalues);
+
+                outputBuffers.at(2)[3 * (y * outputWidth + x) + 0] = rvariance;
+                outputBuffers.at(2)[3 * (y * outputWidth + x) + 1] = gvariance;
+                outputBuffers.at(2)[3 * (y * outputWidth + x) + 2] = bvariance;
+
+                // Index [3] : STD
+                float rstd = sqrt(rvariance);
+                float gstd = sqrt(gvariance);
+                float bstd = sqrt(bvariance);
+
+                outputBuffers.at(3)[3 * (y * outputWidth + x) + 0] = rstd;
+                outputBuffers.at(3)[3 * (y * outputWidth + x) + 1] = gstd;
+                outputBuffers.at(3)[3 * (y * outputWidth + x) + 2] = bstd;
+
+                // Index [4] : SKEWNESS
+                float rskew = getSkewness(rmean, rstd, rvalues);
+                float gskew = getSkewness(gmean, gstd, gvalues);
+                float bskew = getSkewness(bmean, bstd, bvalues);
+
+                outputBuffers.at(4)[3 * (y * outputWidth + x) + 0] = rskew;
+                outputBuffers.at(4)[3 * (y * outputWidth + x) + 1] = gskew;
+                outputBuffers.at(4)[3 * (y * outputWidth + x) + 2] = bskew;
+
+                // Index [5] : KURTOSIS
+                float rkurtosis = getKurtosis(rmean, rstd, rvalues);
+                float gkurtosis = getKurtosis(gmean, gstd, gvalues);
+                float bkurtosis = getKurtosis(bmean, bstd, bvalues);
+
+                outputBuffers.at(5)[3 * (y * outputWidth + x) + 0] = rkurtosis;
+                outputBuffers.at(5)[3 * (y * outputWidth + x) + 1] = gkurtosis;
+                outputBuffers.at(5)[3 * (y * outputWidth + x) + 2] = bkurtosis;
+
+                // Index [6] : MODE (TODO: check computation time and if very necessary)
+                float rmode = getMode(rvalues);
+                float gmode = getMode(gvalues);
+                float bmode = getMode(bvalues);
+
+                outputBuffers.at(6)[3 * (y * outputWidth + x) + 0] = rmode;
+                outputBuffers.at(6)[3 * (y * outputWidth + x) + 1] = gmode;
+                outputBuffers.at(6)[3 * (y * outputWidth + x) + 2] = bmode;                
+
+                index += 3;
+            }
+        }
+        // }
+    }
+
+    // Save here new rawls image
+    std::string comments = rawls::getCommentsRAWLS(imagesPath.at(0));
+
+    for (int i = 0; i < outputFiles.size(); i++) {
+
+        // construct specific outfile name
+        bool success = rawls::saveAsRAWLS(outputWidth, outputHeight, nbChanels, comments, outputBuffers[i], outputFiles[i]);
+
+        if (success) {
+            std::cout << "New image saved into " << outputFiles[i] << std::endl;
+        }
+        else
+        {
+            std::cout << "Error while saving current image " << outputFiles[i] << std::endl;
+        }
+
+        delete outputBuffers[i];
+    }
+
+}

+ 0 - 3
rawls/rawls.cpp

@@ -292,11 +292,8 @@ std::tuple<unsigned, unsigned, unsigned, float*> rawls::getDataRAWLS(std::string
             std::getline(rf, line); // avoid data size line
 
             rf.read((char *) &width, sizeof(unsigned));
-            rf.get(c);
             rf.read((char *) &height, sizeof(unsigned));
-            rf.get(c);
             rf.read((char *) &nbChanels, sizeof(unsigned));
-            rf.get(c);
         }
     }
 

+ 33 - 0
run/convert_all_rawls.py

@@ -0,0 +1,33 @@
+import os
+import argparse
+import glob
+
+def main():
+
+    parser = argparse.ArgumentParser(description="Convert rawls file into png")
+
+    parser.add_argument('--folder', type=str, help='folder with all rawls files', required=True)
+    parser.add_argument('--output', type=str, help='folder with all png files', required=True)
+
+    args = parser.parse_args()
+
+    p_folder = args.folder
+    p_output = args.output
+
+    images_path = glob.glob(f"{p_folder}/**/**/*.rawls")
+
+    for img in sorted(images_path):
+
+        output_path = img.replace('.rawls', '.png')
+        output_path = output_path.replace(p_folder, p_output)
+
+        output_folder, _ = os.path.split(output_path)
+
+        if not os.path.exists(output_folder):
+            os.makedirs(output_folder)
+        
+        os.system(f'./build/main/rawls_convert --image {img} --outfile {output_path}')
+    
+
+if __name__ == "__main__":
+    main()

+ 9 - 2
run/convert_folder.sh

@@ -36,14 +36,21 @@ do
         filename=$folder$file
         filename_fixed=${filename//\/\//\/}
 
-        IFS='.' read -ra ADDR <<< "${file}"
 
+        IFS='/' read -ra ADDR <<< "${scene}"
+        scene_folder=${ADDR[-1]}
+
+        # get output expected path
+        output_scene_path=$output_folder/$scene_folder
+
+        
+        IFS='.' read -ra ADDR <<< "${file}"        
         filename_without_ext=${ADDR[0]}
         outfile="${filename_without_ext}.${ext}"
 
         # check if filename contains 
         if [[ "$file" == ${prefix}* ]]; then
-            ./main/rawls_convert --image ${filename_fixed} --outfile ${output_folder}/${outfile}
+            echo ./build/main/rawls_convert --image ${filename_fixed} --outfile ${output_scene_path}/${outfile}
         fi
     done 
   done

+ 5 - 0
run/run_all_estimators.py

@@ -1,5 +1,6 @@
 import os
 import argparse
+import time
 
 def main():
 
@@ -37,7 +38,11 @@ def main():
             outfilename = os.path.join(output_folder, scene + '_10000.rawls')
 
             if not os.path.exists(outfilename):
+                t1 = time.time()
                 os.system('./build/main/extract_stats_images --folder {0} --bwidth {1} --bheight {2} --outfile {3} --estimator {4}'.format(scene_path, x_tile, y_tile, p_est, outfilename))
+                t2 = time.time()
+                delta = (t2 - t1)
+                print(f'Extraction for {scene}, took {delta}')
             else:
                 print('Already generated')
 

+ 56 - 0
run/run_all_estimators_reduced.py

@@ -0,0 +1,56 @@
+import os
+import argparse
+import time
+
+def main():
+
+    estimators = ["mean", "median", "var", "std", "skewness", "kurtosis", "mode"]
+
+    parser = argparse.ArgumentParser("Run estimators reconstruction")
+    parser.add_argument('--folder', type=str, help='folder with rawls scene data', required=True)
+    parser.add_argument('--nfiles', type=int, help='expected number of rawls files', required=True)
+    parser.add_argument('--tiles', type=str, help='tiles size: 100,100', default="100,100")
+    parser.add_argument('--output', type=str, help='output folder', required=True)
+
+    args = parser.parse_args()
+
+    p_folder = args.folder
+    p_nfiles = args.nfiles
+    x_tile, y_tile = list(map(int, args.tiles.split(',')))
+    p_output = args.output
+
+    scenes = sorted(os.listdir(p_folder))
+
+    for scene in scenes:
+        scene_path = os.path.join(p_folder, scene)
+        nelements = len(os.listdir(scene_path))
+
+        if nelements == p_nfiles:
+
+            # check all scene folder exists
+            checked_folder = []
+
+            for est in estimators:
+                output_folder = os.path.join(p_output, est, scene)
+
+                if not os.path.exists(output_folder):
+                    os.makedirs(output_folder)
+
+                outfilename = os.path.join(output_folder, scene + '.rawls')
+
+                checked_folder.append(os.path.exists(outfilename))
+
+            if not all(checked_folder):
+                print(f'Extraction of estimators for {scene} scene')
+                t1 = time.time()
+                print('./build/main/extract_stats_images_all_reduced --folder {0} --bwidth {1} --bheight {2} --nfiles {3} --output {4}'.format(scene_path, x_tile, y_tile, p_nfiles, p_output))
+                t2 = time.time()
+                delta = (t2 - t1)
+                print(f'Extraction for {scene}, took {delta}')
+            else:
+                print(f'Estimators for {scene}, already generated')
+
+
+
+if __name__ == "__main__":
+    main()