123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530 |
- #include <stdio.h>
- #include <string.h>
- #include <sstream>
- #include <iostream>
- #include <fstream>
- #include <vector>
- #include <tuple>
- #include <cmath>
- #include <numeric>
- #include <map>
- #include <algorithm>
- #include <filesystem>
- #include <unistd.h>
- #include <bits/stdc++.h>
- #include <iostream>
- #include <sys/stat.h>
- #include <sys/types.h>
- #include "rawls.h"
- struct Point {
- unsigned x;
- unsigned y;
- };
- struct Tile {
- Point p1;
- Point p2;
- };
- std::vector<std::string> split(const std::string& s, char delimiter)
- {
- std::vector<std::string> tokens;
- std::string token;
- std::istringstream tokenStream(s);
- while (std::getline(tokenStream, token, delimiter))
- {
- tokens.push_back(token);
- }
- return tokens;
- }
- void writeProgress(float progress, bool moveUp = false){
- int barWidth = 150;
- if (moveUp){
- // move up line
- std::cout << "\e[A";
- std::cout.flush();
- }
- std::cout << "[";
- int pos = barWidth * progress;
- for (int i = 0; i < barWidth; ++i) {
- if (i < pos) std::cout << "=";
- else if (i == pos) std::cout << ">";
- else std::cout << " ";
- }
- std::cout << "] " << int(progress * 100.0) << " %\r";
- std::cout.flush();
- }
- float getMedian(std::vector<float> &values) {
- std::sort(values.begin(), values.end());
- unsigned size = values.size();
- if (size % 2 == 0)
- {
- return (values[size / 2 - 1] + values[size / 2]) / 2;
- }
- else
- {
- return values[size / 2];
- }
- }
- float getVariance(float &mean, std::vector<float> &values){
- // Now calculate the variance
- auto variance_func = [&mean](float accumulator, const float& val) {
- return accumulator + pow(val - mean, 2);
- };
- return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
- }
- float getSkewness(float &mean, float &std, std::vector<float> &values) {
- unsigned size = values.size();
- // Now calculate the sum of pow 3
- auto order3_func = [&mean, &std](float accumulator, const float& val) {
- return accumulator + pow((val - mean) / std, 3);
- };
- float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
- return order3 / size;
- }
- float getKurtosis(float &mean, float &std, std::vector<float> &values){
- unsigned size = values.size();
- // Now calculate the sum of pow 4
- auto order4_func = [&mean, &std](float accumulator, const float& val) {
- return accumulator + pow((val - mean) / std, 4);
- };
- float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
- return order4 / size;
- }
- float getMode(std::vector<float> &values) {
- std::vector<float> pvalues;
- for (unsigned i = 0; i < values.size(); i++){
- pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
- }
- typedef std::map<float,unsigned int> CounterMap;
- CounterMap counts;
- for (int i = 0; i < pvalues.size(); ++i)
- {
- CounterMap::iterator it(counts.find(pvalues[i]));
- if (it != counts.end()){
- it->second++;
- } else {
- counts[pvalues[i]] = 1;
- }
- }
- // Create a map iterator and point to beginning of map
- std::map<float, unsigned int>::iterator it = counts.begin();
- unsigned noccurences = 0;
- float modeValue = 0.;
- // Iterate over the map using Iterator till end.
- while (it != counts.end())
- {
- // Accessing KEY from element pointed by it.
- float potentialMode = it->first;
- // Accessing VALUE from element pointed by it.
- unsigned count = it->second;
- if (count > noccurences) {
- noccurences = count;
- modeValue = potentialMode;
- }
- // Increment the Iterator to point to next entry
- it++;
- }
- return modeValue;
- }
- // float getEstimator(std::string estimator, std::vector<float> values) {
- // // another version of scripts in order to quick compute data
- // if (estimator == "median") {
-
- // std::sort(values.begin(), values.end());
- // unsigned size = values.size();
- // if (size % 2 == 0)
- // {
- // return (values[size / 2 - 1] + values[size / 2]) / 2;
- // }
- // else
- // {
- // return values[size / 2];
- // }
- // } else if (estimator == "mean") {
- // return std::accumulate(values.begin(), values.end(), 0.0) / values.size();
- // } else if (estimator == "var") {
- // // Calculate the mean
- // const float mean = std::accumulate(values.begin(), values.end(), 0.0) / values.size();
- // // Now calculate the variance
- // auto variance_func = [&mean](float accumulator, const float& val) {
- // return accumulator + pow(val - mean, 2);
- // };
- // return std::accumulate(values.begin(), values.end(), 0.0, variance_func) / values.size();
- // } else if (estimator == "std") {
- // return sqrt(getEstimator("var", values));
- // } else if (estimator == "skewness") {
- // unsigned size = values.size();
- // float mean = getEstimator("mean", values);
- // float std = getEstimator("std", values);
- // // Now calculate the sum of pow 3
- // auto order3_func = [&mean, &std](float accumulator, const float& val) {
- // return accumulator + pow((val - mean) / std, 3);
- // };
- // float order3 = std::accumulate(values.begin(), values.end(), 0.0, order3_func);
- // return order3 / size;
- // } else if (estimator == "kurtosis") {
-
- // unsigned size = values.size();
- // float mean = getEstimator("mean", values);
- // float std = getEstimator("std", values);
- // // Now calculate the sum of pow 4
- // auto order4_func = [&mean, &std](float accumulator, const float& val) {
- // return accumulator + pow((val - mean) / std, 4);
- // };
- // float order4 = std::accumulate(values.begin(), values.end(), 0.0, order4_func);
- // return order4 / size;
- // } else if (estimator == "mode") {
- // std::vector<float> pvalues;
- // for (unsigned i = 0; i < values.size(); i++){
- // pvalues.push_back(roundf(values.at(i) * 100) / 100.0);
- // }
- // typedef std::map<float,unsigned int> CounterMap;
- // CounterMap counts;
- // for (int i = 0; i < pvalues.size(); ++i)
- // {
- // CounterMap::iterator it(counts.find(pvalues[i]));
- // if (it != counts.end()){
- // it->second++;
- // } else {
- // counts[pvalues[i]] = 1;
- // }
- // }
- // // Create a map iterator and point to beginning of map
- // std::map<float, unsigned int>::iterator it = counts.begin();
- // unsigned noccurences = 0;
- // float modeValue = 0.;
- // // Iterate over the map using Iterator till end.
- // while (it != counts.end())
- // {
- // // Accessing KEY from element pointed by it.
- // float potentialMode = it->first;
- // // Accessing VALUE from element pointed by it.
- // unsigned count = it->second;
- // if (count > noccurences) {
- // noccurences = count;
- // modeValue = potentialMode;
- // }
- // // Increment the Iterator to point to next entry
- // it++;
- // }
- // return modeValue;
- // }
- // // by default
- // return 0.;
- // }
- int main(int argc, char *argv[]){
- std::string folderName;
- std::vector<std::string> estimators = {"mean", "median", "var", "std", "skewness", "kurtosis", "mode"};
- unsigned blockHeight;
- unsigned blockWidth;
- unsigned nfiles = 10000;
- std::string outputFolder;
- for (int i = 1; i < argc; ++i) {
- if (!strcmp(argv[i], "--folder") || !strcmp(argv[i], "-folder")) {
- folderName = argv[++i];
- } else if (!strcmp(argv[i], "--bwidth") || !strcmp(argv[i], "-bwidth")) {
- blockHeight = atoi(argv[++i]);
- } else if (!strcmp(argv[i], "--bheight") || !strcmp(argv[i], "-bheight")) {
- blockWidth = atoi(argv[++i]);
- } else if (!strcmp(argv[i], "--output") || !strcmp(argv[i], "-output")) {
- outputFolder = argv[++i];
- } else if (!strcmp(argv[i], "--nfiles") || !strcmp(argv[i], "-nfiles")) {
- nfiles = atoi(argv[++i]);
- }
- }
- // create outputs directory
- mkdir(outputFolder.c_str(), 0755);
- auto elements = split(folderName, '/');
- std::string sceneName = elements.at(elements.size() - 1);
- for (int i = 0; i < estimators.size(); i++) {
- mkdir((outputFolder + "/" + estimators[i]).c_str(), 0755);
- mkdir((outputFolder + "/" + estimators[i] + "/" + sceneName).c_str(), 0755);
- }
- // get all files path
- std::vector<std::string> imagesPath;
- for (const auto & entry : std::filesystem::directory_iterator(folderName)){
- std::string imageName = entry.path().string();
- if (rawls::HasExtension(imageName, ".rawls") || rawls::HasExtension(imageName, ".rawls_20")){
- imagesPath.push_back(imageName);
- }
- }
- if (imagesPath.size() != nfiles) {
- return 0;
- }
- std::sort(imagesPath.begin(), imagesPath.end());
- std::tuple<unsigned, unsigned, unsigned> data = rawls::getDimensionsRAWLS(imagesPath.at(0));
- unsigned outputWidth = std::get<0>(data);
- unsigned outputHeight = std::get<1>(data);
- unsigned nbChanels = std::get<2>(data);
- std::vector<float*> outputBuffers;
- std::vector<std::string> outputFiles;
- std::vector<std::string> selectedEstimators;
- // new buffer size as new output buffer image (default 3 channels)
- for (int i = 0; i < estimators.size(); i++) {
- std::string outputFile = outputFolder + "/" + estimators[i] + "/" + sceneName + "/" + sceneName + ".rawls";
- std::ifstream ifile;
- ifile.open(outputFile);
- if(!ifile) {
-
- // create new buffer entry
- selectedEstimators.push_back(estimators[i]);
- outputFiles.push_back(outputFile);
- outputBuffers.push_back(new float[outputHeight * outputWidth * nbChanels]);
-
- } else {
- ifile.close();
- }
- }
- // get all tiles to apply
- unsigned nWidth = ceil(outputWidth / (float)blockWidth);
- unsigned nHeight = ceil(outputHeight / (float)blockHeight);
- std::vector<Tile> tiles;
- for (unsigned i = 0; i < nWidth; i++) {
- for (unsigned j = 0; j < nHeight; j++) {
- unsigned x1 = i * blockWidth;
- unsigned y1 = j * blockHeight;
- unsigned x2 = i * blockWidth + blockWidth;
- unsigned y2 = j * blockHeight + blockHeight;
- x2 = x2 > outputWidth ? outputWidth: x2;
- y2 = y2 > outputHeight ? outputHeight: y2;
-
- Point p1 = {x1, y1};
- Point p2 = {x2, y2};
- Tile tile = {p1, p2};
- tiles.push_back(tile);
- }
- }
- unsigned nsamples = imagesPath.size();
- unsigned nloop = tiles.size() * nsamples;
- unsigned nloopCounter = 0;
- for (unsigned t_index = 0; t_index < tiles.size(); t_index++){
- Tile tile = tiles.at(t_index);
- //std::cout << "Tile: (" << tile.p1.x << ", " << tile.p1.y << ")" << " => " << "(" << tile.p2.x << ", " << tile.p2.y << ")" << std::endl;
- unsigned nvalues = (tile.p2.x - tile.p1.x) * (tile.p2.y - tile.p1.y) * 3;
- std::vector<std::vector<float>> rgbValues(nvalues);
- for (unsigned i = 0; i < nsamples; i++) {
-
- try {
-
- float* RGBpixels = rawls::getPixelsRAWLS(imagesPath.at(i));
- std::cout << "Read image n°" << i << " / " << nsamples << " for tile n°" << t_index << " / " << tiles.size() << std::endl;
- unsigned index = 0;
- for (int y = tile.p1.y; y < tile.p2.y; ++y) {
- for (int x = tile.p1.x; x < tile.p2.x; ++x) {
-
- rgbValues.at(index).push_back(RGBpixels[3 * (y * outputWidth + x) + 0]);
- rgbValues.at(index + 1).push_back(RGBpixels[3 * (y * outputWidth + x) + 1]);
- rgbValues.at(index + 2).push_back(RGBpixels[3 * (y * outputWidth + x) + 2]);
- index += 3;
-
- }
- }
- delete RGBpixels;
- } catch(std::exception& e){
- std::cout << "Error occurs when reading file" << std::endl;
- }
- // display progress
- nloopCounter += 1;
- writeProgress(nloopCounter / (float)nloop);
- }
- // for (int i = 0; i < outputFiles.size(); i++) {
-
- // extract stat and add predicted value into output buffer
- unsigned index = 0;
- for (int y = tile.p1.y; y < tile.p2.y; ++y) {
- for (int x = tile.p1.x; x < tile.p2.x; ++x) {
-
- // Here we will compute each estimator in specific order
- // => {"median", "var", "std", "skewness", "kurtosis", "mode"}
- auto rvalues = rgbValues.at(index + 0);
- auto gvalues = rgbValues.at(index + 1);
- auto bvalues = rgbValues.at(index + 2);
-
- // Index [0] : MEAN
- float rmean = std::accumulate(rvalues.begin(), rvalues.end(), 0.0) / rvalues.size();
- float gmean = std::accumulate(gvalues.begin(), gvalues.end(), 0.0) / gvalues.size();
- float bmean = std::accumulate(bvalues.begin(), bvalues.end(), 0.0) / bvalues.size();
- outputBuffers.at(0)[3 * (y * outputWidth + x) + 0] = rmean;
- outputBuffers.at(0)[3 * (y * outputWidth + x) + 1] = gmean;
- outputBuffers.at(0)[3 * (y * outputWidth + x) + 2] = bmean;
- // Index [1] : MEDIAN
- float rmedian = getMedian(rvalues);
- float gmedian = getMedian(gvalues);
- float bmedian = getMedian(bvalues);
- outputBuffers.at(1)[3 * (y * outputWidth + x) + 0] = rmedian;
- outputBuffers.at(1)[3 * (y * outputWidth + x) + 1] = gmedian;
- outputBuffers.at(1)[3 * (y * outputWidth + x) + 2] = bmedian;
- // Index [2] : VARIANCE
- float rvariance = getVariance(rmean, rvalues);
- float gvariance = getVariance(gmean, gvalues);
- float bvariance = getVariance(bmean, bvalues);
- outputBuffers.at(2)[3 * (y * outputWidth + x) + 0] = rvariance;
- outputBuffers.at(2)[3 * (y * outputWidth + x) + 1] = gvariance;
- outputBuffers.at(2)[3 * (y * outputWidth + x) + 2] = bvariance;
- // Index [3] : STD
- float rstd = sqrt(rvariance);
- float gstd = sqrt(gvariance);
- float bstd = sqrt(bvariance);
- outputBuffers.at(3)[3 * (y * outputWidth + x) + 0] = rstd;
- outputBuffers.at(3)[3 * (y * outputWidth + x) + 1] = gstd;
- outputBuffers.at(3)[3 * (y * outputWidth + x) + 2] = bstd;
- // Index [4] : SKEWNESS
- float rskew = getSkewness(rmean, rstd, rvalues);
- float gskew = getSkewness(gmean, gstd, gvalues);
- float bskew = getSkewness(bmean, bstd, bvalues);
- outputBuffers.at(4)[3 * (y * outputWidth + x) + 0] = rskew;
- outputBuffers.at(4)[3 * (y * outputWidth + x) + 1] = gskew;
- outputBuffers.at(4)[3 * (y * outputWidth + x) + 2] = bskew;
- // Index [5] : KURTOSIS
- float rkurtosis = getKurtosis(rmean, rstd, rvalues);
- float gkurtosis = getKurtosis(gmean, gstd, gvalues);
- float bkurtosis = getKurtosis(bmean, bstd, bvalues);
- outputBuffers.at(5)[3 * (y * outputWidth + x) + 0] = rkurtosis;
- outputBuffers.at(5)[3 * (y * outputWidth + x) + 1] = gkurtosis;
- outputBuffers.at(5)[3 * (y * outputWidth + x) + 2] = bkurtosis;
- // Index [6] : MODE (TODO: check computation time and if very necessary)
- float rmode = getMode(rvalues);
- float gmode = getMode(gvalues);
- float bmode = getMode(bvalues);
- outputBuffers.at(6)[3 * (y * outputWidth + x) + 0] = rmode;
- outputBuffers.at(6)[3 * (y * outputWidth + x) + 1] = gmode;
- outputBuffers.at(6)[3 * (y * outputWidth + x) + 2] = bmode;
- index += 3;
- }
- }
- // }
- }
- // Save here new rawls image
- std::string comments = rawls::getCommentsRAWLS(imagesPath.at(0));
- for (int i = 0; i < outputFiles.size(); i++) {
- // construct specific outfile name
- bool success = rawls::saveAsRAWLS(outputWidth, outputHeight, nbChanels, comments, outputBuffers[i], outputFiles[i]);
- if (success) {
- std::cout << "New image saved into " << outputFiles[i] << std::endl;
- }
- else
- {
- std::cout << "Error while saving current image " << outputFiles[i] << std::endl;
- }
- delete outputBuffers[i];
- }
- }
|